

# D7.2 First Social Evaluation and Economic report (S-LCA and LCC)

## **FLEXBY**

### **FLEXIBLE AND ADVANCED BIOFUEL TECHNOLOGY THROUGH AN INNOVATIVE MICROWAVE PYROLYSIS & HYDROGEN-FREE HYDRODEOXYGENATION PROCESS**

Grant Agreement Number 101144144

Deliverable name: First Social Evaluation and Economic report (S-LCA and LCC)

Deliverable number: 7.2

Deliverable type: Report

Work Package: WP7 – Sustainability assessment

Lead beneficiary: GD

Contact person: Andreas Ciroth / [ciroth@greendelta.com](mailto:ciroth@greendelta.com)

Dissemination level: Public

Due date for deliverable: December 31, 2025



**Funded by  
the European Union**

*Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or CINEA. Neither the European Union nor the granting authority can be held responsible for them.*

## DOCUMENT CONTROL PAGE

|                            |                                       |
|----------------------------|---------------------------------------|
| Author(s):                 | Shravya Hebbur Murali, Sarah Serafini |
| Contributor(s):            | PMI, US, A4F, FRIMA, IDE              |
| Reviewer(s):               |                                       |
| Version number:            | V3                                    |
| Contractual delivery date: | 31.12.2025                            |
| Actual delivery date:      | 23.12.2025                            |
| Status:                    |                                       |

## REVISION HISTORY

| Version | Date       | Author/Reviewer                          | Notes                          |
|---------|------------|------------------------------------------|--------------------------------|
| v0      | 07.07.2025 | Sarah Serafini                           | Created document               |
| v1      | 11.12.2025 | Shravya Hebbur<br>Murali, Sarah Serafini | First draft - ready for review |
| V2      |            | IDENER team                              | First revision done            |
| V3      | 23.12.2025 | GreenDelta Team                          | Final version                  |

## ACKNOWLEDGEMENTS

The work described in this publication was subsidised by Horizon Europe (HORIZON) framework through the Grant Agreement Number 101144144.

## DISCLAIMER

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or CINEA. Neither the European Union nor the granting authority can be held responsible for them.

## TABLE OF CONTENT

|                                                                              |    |
|------------------------------------------------------------------------------|----|
| DOCUMENT CONTROL PAGE .....                                                  | 2  |
| REVISION HISTORY .....                                                       | 2  |
| ACKNOWLEDGEMENTS .....                                                       | 2  |
| DISCLAIMER .....                                                             | 2  |
| TABLE INDEX .....                                                            | 5  |
| EXECUTIVE SUMMARY .....                                                      | 8  |
| 1 INTRODUCTION .....                                                         | 9  |
| 1.1 DESCRIPTION OF THE DOCUMENT AND PERSUE .....                             | 9  |
| 1.2 WPS AND TASKS RELATED TO THE DELIVERABLE .....                           | 10 |
| 2 Coordination Among Project Partners and General Requirements .....         | 12 |
| 3 State-of-the-Art .....                                                     | 15 |
| 4 Policy frameworks and incentives related to biofuels from Microalgae ..... | 18 |
| 5 Life Cycle Costing and Social LCA .....                                    | 20 |
| 5.1 Goal and scope .....                                                     | 20 |
| 5.2 Modelling and life cycle inventory .....                                 | 31 |
| 6 Life Cycle Costing .....                                                   | 40 |
| 6.1 Limitations .....                                                        | 40 |
| 6.2 Life Cycle Inventory and modelling .....                                 | 40 |
| 6.3 Sensitivity analysis .....                                               | 40 |
| 6.4 Results and interpretation .....                                         | 41 |

|           |                                                                                                                                                                                       |            |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| <b>7</b>  | <b>Social Life Cycle Assessment .....</b>                                                                                                                                             | <b>54</b>  |
| 7.1       | Goal and scope of the Social Life Cycle Assessment (draft) .....                                                                                                                      | 54         |
| 7.2       | Results and interpretation.....                                                                                                                                                       | 70         |
| 7.3       | Integration of Social Surveys within the Social LCA Framework .....                                                                                                                   | 78         |
| <b>8</b>  | <b>From the preliminary LCC and S-LCA to the final integrated sustainability study.....</b>                                                                                           | <b>78</b>  |
| <b>9</b>  | <b>Conclusions .....</b>                                                                                                                                                              | <b>80</b>  |
| <b>10</b> | <b>References .....</b>                                                                                                                                                               | <b>82</b>  |
| <b>11</b> | <b>Appendix 1 – Results of the social hotspots weighting method applied on S2.1, S2.1-SE and S5.1 for the production of biofuels .</b>                                                | <b>88</b>  |
| <b>12</b> | <b>Appendix 2 – Results of the social hotspots weighting method applied on S2.1, S2.1-SE and S5.1 for the production of electricity from the gaseous fraction of bioliquids .....</b> | <b>94</b>  |
| <b>13</b> | <b>Appendix 3 – Results of the social hotspots weighting method applied on S2.1, S2.1-SE and S5.1 for the production of electricity from gas fraction .....</b>                       | <b>102</b> |
| <b>14</b> | <b>Appendix 4 – Results of the social hotspots weighting method applied on S2.1, S2.1-SE and S5.1 for the production of biochar</b>                                                   | <b>110</b> |
| <b>15</b> | <b>Appendix 5 – Results of the relative contributions of process stages to the social hotspots in S2.1 .....</b>                                                                      | <b>118</b> |
| <b>16</b> | <b>Appendix 6 – Results of the relative contributions of process stages to the social hotspots in S2.1 .....</b>                                                                      | <b>124</b> |

## TABLE INDEX

|                                                                                                                               |    |
|-------------------------------------------------------------------------------------------------------------------------------|----|
| Table 1 - Overview of FLEXBY system CAPEX costs .....                                                                         | 36 |
| Table 2 - overview of FLEXBY system OPEX inputs related to machinery energy requirements.....                                 | 37 |
| Table 3 - Overview of prices for water and electricity - OPEX .....                                                           | 38 |
| Table 4 - Overview of energy and consumables (aside from catalysts) .....                                                     | 38 |
| Table 5 - Overview of costs and characteristics of catalysts.....                                                             | 38 |
| Table 6 - Sensitivity analysis scenarios.....                                                                                 | 41 |
| Table 7 -Quantities of the product fractions for which the results are reported (in bold) and intermediate streams. .....     | 41 |
| Table 8 - LCC results for the biofuel production from the bioliquid pathway of the pyrolysis.....                             | 42 |
| Table 9 - LCC results for the electricity production from the gaseous fraction of the bioliquid pathway of the pyrolysis..... | 45 |
| Table 10 - LCC results for the electricity production from the pyro-gas pathway of the pyrolysis.....                         | 49 |
| Table 11 - LCC results for the electricity production from the biochar pathway of the pyrolysis.....                          | 52 |
| Table 12: Characterisation factors in the PSILCA database.....                                                                | 57 |
| Table 13: Impact categories covering the social indicators in PSILCA v4.0 .....                                               | 58 |
| Table 14: PSILCA processes corresponding to Cultivation and harvesting of feedstock .....                                     | 67 |
| Table 15: PSILCA processes corresponding to Cultivation and harvesting of feedstock .....                                     | 69 |
| Table 16: PSILCA processes corresponding to processing pyrolysis fractions .....                                              | 70 |

**FIGURE INDEX**

|                                                                                                                                                                                                                                       |    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 1: Block Flow Diagram of the FLEXBY process. ....                                                                                                                                                                              | 23 |
| Figure 2 - Preliminary design concept of a microwave-assisted pyrolysis reactor operating in two stages: an initial drying mode followed by nitrogen (N <sub>2</sub> ) injection and pyrolysis processing (from Deliverable 3.1)..... | 24 |
| Figure 3 - Process Flow Diagram of bio-liquid refining, with its associated streams, as in Deliverable 2.3 .....                                                                                                                      | 29 |
| Figure 4 - Process Flow Diagram of pyrolysis gas post-processing, with its associated streams, as in Deliverable 2.3. Note that the latest technological development of FLEXBY include a SOFC cell and not a PEM cell .....           | 30 |
| Figure 5 - Detail of scenario 2.1 of biofuel from bioliquid pathway .....                                                                                                                                                             | 44 |
| Figure 6 - Detail of scenario 2.1-SE of biofuel from bioliquid pathway .....                                                                                                                                                          | 44 |
| Figure 7 - Detail of scenario 5.1 of biofuel from bioliquid pathway .....                                                                                                                                                             | 45 |
| Figure 8 - Detail of scenario 2.1 of electricity from bioliquid pathway .....                                                                                                                                                         | 47 |
| Figure 9 - Detail of scenario 2.1-SE of electricity from bioliquid pathway.....                                                                                                                                                       | 48 |
| Figure 10 - Detail of scenario 5.1 of electricity from bioliquid pathway.....                                                                                                                                                         | 48 |
| Figure 11 - Detail of scenario 2.1 of electricity from pyro-gas pathway.....                                                                                                                                                          | 50 |
| Figure 12 - Detail of scenario 2.1-SE of electricity from pyro-gas pathway.....                                                                                                                                                       | 51 |
| Figure 13 - Detail of scenario 5.1 of electricity from pyro-gas pathway.....                                                                                                                                                          | 51 |
| Figure 14 - Detail of scenario 2.1 of biochar pathway.....                                                                                                                                                                            | 52 |
| Figure 15 - Detail of scenario 2.1-SE of biochar pathway.....                                                                                                                                                                         | 53 |
| Figure 16 - Detail of scenario 5.1 of biochar pathway.....                                                                                                                                                                            | 53 |
| Figure 17: Hotspot analysis of S2.1, S2.1-SE and S5.1 for the production of biofuels with the FLEXBY system .....                                                                                                                     | 73 |

|                                                                                                                                                                 |    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 18: Hotspot analysis of S2.1, S2.1-SE and S5.1 for the production of electricity from the gaseous fraction of the bioliquid from the FLEXBY system ..... | 73 |
| Figure 19 - Relative contributions of process stages to the sector social indicators for the production of biofuel.....                                         | 74 |
| Figure 20: Hotspot analysis of S2.1, S2.1-SE and S5.1 for the production of electricity from the gas fraction pathway of the FLEXBY system.....                 | 76 |
| Figure 21: Hotspot analysis of S2.1, S2.1-SE and S5.1 of biochar in the FLEXBY system .....                                                                     | 76 |
| Figure 22: Relative contributions of process stages to the sector social indicators for the production of electricity from gas fraction .....                   | 77 |

## EXECUTIVE SUMMARY

This document corresponds to the technical report "*First Social Evaluation and Economic Report (S-LCA and LCC)*" (Deliverable 7.2) and presents the preliminary results of the Life Cycle Costing (LCC) and Social Life Cycle Assessment (S-LCA) of the FLEXBY system. The assessment was conducted by **GD** with the support of all project partners within WP7. The study follows established LCC principles, ISO 14040-44 for the LCI structure, as well as the UNEP-SETAC 2009/2020 S-LCA guidelines and aligns with the system boundaries defined in the preliminary environmental LCA with additional data considering machinery (Deliverable 7.1). Together, the LCC and S-LCA provide an early-stage, cradle-to-gate evaluation of FLEXBY's economic performance and potential social impacts, offering the foundation for the final integrated sustainability assessment at Month 48.

The LCC and S-LCA were developed using a harmonised process structure and shared data templates, drawing upon process simulations, partner-supplied equipment specifications, catalyst data, and experimental inputs available to date. The modelling work was carried out in openLCA, using ecoinvent v3.11 for the LCC background data, and the SOCA v4 database for the S-LCA background data.

Coordination with project partners played a central role in refining assumptions and collecting primary economic and social data. **IDE** provided insights on potential valorisation options for biochar and contributed to process alignment. **PMI** supplied preliminary CAPEX and OPEX estimates for the upgrading units, which were further refined through discussions with **US**, who contributed additional inputs on catalyst types, replacement rates, and equipment maintenance requirements. **FRIMA** provided detailed information on the design and component-level behaviour of the microwave pyrolysis unit, while **A4F** supplied cultivation and harvesting data from raceway pond operation, including social indicators related to worker safety and plant operation.

A state-of-the-art review of LCC and S-LCA work related to biofuel production, pyrolysis-based conversion chains, and microalgae systems supported the methodological choices. The review helped positioning FLEXBY system in the current context of similar system.

The preliminary LCC models were built for two feedstocks:

- Feedstock 2 – microalgae grown in municipal wastewater (with and without wastewater treatment services), and
- Feedstock 5 – dairy-based oily sludge obtained directly from a wastewater treatment plant.

The assessment considers the different products of the FLEXBY conversion routes: biofuel from the bioliquid fraction, electricity from the gaseous fraction of the bioliquid pathway, electricity from pyro-gas, and biochar production.

## 1 INTRODUCTION

### 1.1 DESCRIPTION OF THE DOCUMENT AND PERSUE

This report, Deliverable 7.2, titled “First Social Evaluation and Economic Report (S-LCA and LCC)”, submitted in month 20 of the FLEXBY project, presents the initial life cycle costing (LCC) and social life cycle assessment (S-LCA) of the FLEXBY technology at its current stage of development. In particular, the report includes:

- An overview of state-of-the-art LCC and S-LCA studies for comparable biofuel and microalgae-based systems,
- The goal and scope definitions following established LCC principles and UNEP-SETAC S-LCA guidelines (2009/2020) and aligned with ISO 14040/44,
- The methodological framework, modelling assumptions, data sources, and system boundaries applied to the cradle-to-gate assessment,
- The preliminary LCC results for biofuel, gas fraction-derived electricity, and biochar pathways, including sensitivity analyses for different feedstocks and wastewater-treatment scenarios,
- The initial screening of social hotspots across relevant stakeholder groups using the SOCA database,
- Key data gaps and recommendations to support the final integrated sustainability assessment planned for Month 48.

This document forms the basis for guiding the continued refinement, optimisation, and sustainability integration of the FLEXBY system from both an economic and a social perspective.

## 1.2 WPS AND TASKS RELATED TO THE DELIVERABLE

This deliverable refers to **Task 7.2**: Life Cycle Costing (Task Leader: GD; Other partners: ALL) [M01-M44] and **Task 7.3**: Social Life Cycle Assessment, including gender issues (Leader: GD; Others: ALL [M01-M44] included on **WP7**: Sustainability assessment.

Task 7.2:

*During this task, GD will address Life Cycle Costing (LCC) and an economic enabling evaluation at the micro-level. The LCC will ensure a general level assessment based on the actual costs of the biofuel production. It will be performed with respect to a long-term picture of the product line profitability. LCC will entail three steps: 1) Specification: using the market data from task 8.1, this step will list all required product characteristics and establish manufacturing and raw material costs alongside the expected performance; 2) Prototype Manufacture and Design: this step will allow estimating potential investment costs linked with the start of the production using data from task 5.3. Moreover, prototype production costs will be calculated at this point in order to give a more precise overview to decision-makers; and (3) Utilisation and Recycling costs: Every product produced is connected to waste disposal and utilisation costs. Both parameters will be summarised and added to the final part of the LCC. For costs over the life cycle, own data and data from generic databases and marketplaces will be used. The output of the action will be a comprehensive economic report which is open to ALL the continuous partner contributions and suggestions. It will be based on information related to more actual costs and might be subject to change.*

Task 7.3:

*GD will provide a comprehensive analysis of the requirements for European society to fully utilise and integrate the FLEXBY project technology and related products into various industrial and small-scale sectors. Extensive literature research will be conducted in order to collect the latest results of what potential social and political barriers and drivers exist. For completing supply chains, social LCA databases will be used. Results will be calculated and analysed, together with the identification of hot*

*spots. This task will also include gender issues, and FLEXBY through surveys, will analyse the factors that intersect with gender (income, age, travel patterns, geographic location and environmental attitudes). It will allow a better understanding of climate impacts and consequently contribute to environmental policies with optimised mitigation measures. Input from all the partners will be crucial for this task.*

## 2 Coordination Among Project Partners and General Requirements

For the preparation of this deliverable, **GD** consistently organised online meetings with the relevant technical partners involved at this stage, to ensure the prompt exchange of necessary data, particularly concerning costs and key indicators. In detail:

- **PMI**, to review their preliminary CAPEX estimates for upgrading two pyrolysis fractions (specifically bio-oil and gas fraction), followed by discussions on the corresponding OPEX.
- **A4F**, to discuss aspects related to the microalgae growth phase.
- **FRIMA**, to receive updates on the design of the microwave system.
- **US**, building on PMI's estimations, to further examine replacement costs and replacement rates of various components.
- **IDE**, to assess the fate of the biochar phase, explore potential optimisation pathways, as well as to support coordination among partners.

The collaboration and diverse expertise of the partners facilitated the exchange of essential data for the preliminary LCC and S-LCA, supporting the identification of key cost drivers and sustainability aspects. Primary data were collected whenever available; however, given the early stage of the project, simulations and well-grounded assumptions were applied, when necessary. Each meeting is summarised below, highlighting the most relevant inputs shared by the partners, which were instrumental in shaping the foundational analyses for both the LCC and the S-LCA.

### IDE-GD meeting

**IDE** played an important role in supporting coordination among the partners, ensuring alignment of technical inputs relevant to both the LCC and S-LCA. A major point of discussion concerned the potential fate of the biochar, including whether it could be activated (chemically or physically, based on the tests conducted from **CSIC**) or alternatively valorised without activation in different sectors.

Although WP5 has not yet started, the meeting also included a preliminary discussion on potential optimisation pathways, exploring early opportunities to improve performance within the overall process.

### **PMI-GD meeting**

The meetings with **PMI** were primarily focused on coordination, as several activities carried out by **PMI** and **GD** were closely aligned and needed to progress in parallel. A significant part of the discussions involved reviewing **PMI**'s initial CAPEX estimations for the components required to upgrade the bioliquid and gas fractions. These estimates were revisited to verify whether any updates or adjustments were necessary based on the latest technical inputs.

Following this, attention shifted to the OPEX considerations, where operational costs associated with the same upgrading processes were examined. This collaborative exchange ensured consistency between technical assumptions and the economic modelling required for the LCC.

### **A4F-GD meeting**

The discussion with **A4F** focused primarily on the costs associated with the microalgae growth phase. At this stage of the project, microalgae cultivation is performed specifically for FLEXBY, however, the objective of the project is to integrate the system into an urban wastewater treatment process, where the production of biofuel would valorise the algal biomass residue from urban wastewater treatment.

**A4F** also provided information on replacement rates of key components and other cost-related aspects required for the LCC analysis. In addition, they contributed with inputs for the S-LCA, including relevant social indicators and identification of stakeholders associated with processes. These included insights into activities conducted at their facility, such as employee safety training, the use of personal protective equipment (PPE), and other practices linked to worker well-being and operational safety.

### **FRIMA-GD meeting**

**FRIMA** successfully submitted Deliverable 3.1, which presents the detailed design of the microwave machine. Building on this deliverable, subsequent meetings focused on gathering data essential for the LCC and S-LCA.

During these meetings, **FRIMA** provided information detailed related to the design, construction, and operational aspects of the microwave system, including costs, sourcing of components and the replacement rates of specific parts.

### **US-GD meeting**

Since **US** will ultimately operate the machinery for upgrading the two pyrolysis fractions, the meeting with them focused on validating and refining the economic assumptions derived from **PMI**'s initial review. While **PMI**'s estimations primarily covered the initial capital expenditure, the discussion with **US** centred on identifying the components requiring replacement at rates different from the overall system lifespan, as well as determining the associated replacement costs.

**US** also provided insights regarding the catalyst they are designing (a topic they further elaborated in Deliverable 4.1). The meeting included a discussion of the costs associated with the catalyst and potential concerns related to the sourcing of rare metals, highlighting important considerations for both the LCC and S-LCA analyses.

### 3 State-of-the-Art

The progressive rise in global population, industrialisation, and urbanisation has intensified the demand for energy while accelerating greenhouse gas emissions from fossil fuel consumption. This dependence not only threatens long-term energy security but also exacerbates climate change and environmental degradation. Recent preliminary estimates from the Global Carbon Budget 2025 indicate that total anthropogenic CO<sub>2</sub> emissions (combining fossil fuel combustion and land-use change) are projected to reach approximately 42.2 Gt CO<sub>2</sub> in 2025, 1.1% more than 2024, marking another record high (Friedlingstein et al., 2025, preprint). Despite the ratification of the Paris Agreement, signed by over 190 countries and aimed at limiting global warming to well below 2 °C, observed emission trajectories remain significantly misaligned with pathways required for climate stabilisation. According to the Emissions Gap Report 2019, global greenhouse gas emissions must decline rapidly, with reductions of 7.6% per year in the decade 2020-2030 to remain on pathways consistent with limiting warming to 1.5 °C. This widening mitigation gap underscores the urgency of accelerating global low-carbon transitions.

The continued escalation of CO<sub>2</sub> emissions reflects a transgression of the planetary boundary for climate change, as defined by Earth System science. This boundary, conceptualised by Rockström et al. (2009), marks a critical threshold beyond which the risk of abrupt and irreversible system-level shifts increases substantially. Specifically, the climate boundary is described as maintaining atmospheric concentrations below 350 ppm CO<sub>2</sub> in order to preserve system resilience and ecological stability (Rockström et al., 2009). Current emission trajectories far surpass this boundary, intensifying risks of feedback and instability across climate and biosphere integrity domains (Drücke et al., 2024).

Consequently, these trends highlight the imperative for immediate and large-scale adoption of low-carbon technologies and policies. Failure to reverse current emission patterns threatens climate equilibrium and the adaptive capacity of both human and ecological systems, emphasising a pressing need for transformative interventions in global energy systems.

The transportation sector remains one of the largest contributors to greenhouse gas emissions, accounting for around 15% of global emissions (IPCC, 2023). To mitigate such emissions and achieve sustainable energy goals, renewable biofuels such as bioethanol and biodiesel have gained attention as viable alternatives. However, first-generation biofuels derived from food-based feedstocks have raised serious socio-economic and ethical debates over food security, leading to the advancement of second-generation biofuels based on lignocellulosic biomass (Naik et al., 2010; Ahmed et al., 2021). According to a Deloitte 2022 study, the sectoral contribution of biofuels to the EU27 economy with a direct Gross Domestic Product (GDP) impact of 2,304 M€ and an indirect at 6 621 M€ with a total 8,925 M€, with most of the contribution arising from the operation and maintenance phase (JRC, 2023; Deloitte, 2022). Despite improvements in conversion technologies and biomass utilisation, second-generation biofuels still face challenges related to feedstock availability, logistics, and seasonal dependency, limiting their scalability and economic feasibility (Sims et al., 2010).

Third- and fourth-generation biofuels, particularly those derived from microalgae, offer a promising pathway toward overcoming these limitations (Dutta et al., 2014, Mat Aron., et al, 2020). Microalgae are photosynthetic microorganisms capable of converting CO<sub>2</sub> and solar energy into biomass rich in lipids, carbohydrates, and proteins, which are suitable for diverse biofuel pathways (Brennan & Owende, 2010). Their cultivation does not compete with agricultural food production as they can grow in non-arable lands and saline water or even wastewater. Moreover, microalgae exhibit rapid growth rates and high areal productivities exceeding those of terrestrial biofuel crops (Chisti, 2007; Singh & Gu, 2010). They also demonstrate relevant CO<sub>2</sub> uptake capacity, with several studies highlighting their potential for significant carbon mitigation, even from an LCA perspective (Wang et al., 2008, Lardon et al., 2009).

The use of waste residues, as in FLEXBY, to replace fossil fuels can reduce reliance on imported fossil fuels and the geopolitical vulnerabilities associated with oil and gas distribution. It can also reduce the number of accidents and supply chain vulnerabilities present along fossil fuel supply chains. The flexible feedstock options in the project rely on waste residue or feedstock that does not compete with food resources. The FLEXBY process can employ dairy sludge, which would otherwise be anaerobically digested/incinerated, or microalgae biomass after growth in wastewater, which would additionally serve the function of wastewater treatment (Amaro et al., 2023) and carbon capture during the growth phase. This has been demonstrated in the EU project

Sabana and is in practice by the plant operated by Aqualia with different species of microalgae (SABANA, 2020)

The sustainability of microalgae biofuel production depends on several factors including the cultivation method, harvesting and dewatering, drying, nutrient inputs and conversion process (Lardon et al., 2009). Life cycle assessment studies indicate that co-locating algal cultivation with industrial facilities or wastewater treatment plants can significantly reduce greenhouse gas emissions and improve wastewater quality (Collotta et al., 2016). See also Deliverable 7.1.

From an economic perspective, the limited LCC studies available show a high degree of variability, mirroring the methodological diversity reported in D7.1 (titled *Preliminary LCA*) about LCA state-of-the-Art. This inconsistency originates from differences in cultivation systems, productivity assumptions, reactor design, dewatering strategies, conversion technologies, and allocation approaches. Nonetheless, LCC and TEA on similar systems highlight that there is growing evidence that with the right combination of cultivation strategy, process design, and by-product valorisation, the concept remains worth pursuing. The comprehensive review "*Microalgal biorefineries: a systematic review of technological trade-offs and innovation pathways*" (2025) demonstrates that there exist realistic, evidence-based configurations combining advanced cultivation strategies, energy-efficient harvesting and dewatering, bioproduct recovery, and valorisation of co-products that could substantially improve both economic viability and sustainability of microalgal biorefineries, thereby keeping the concept relevant and promising for future circular-bioeconomy.

Although capital expenditure and operational costs remain considerable, significant cost reductions can be achieved by optimising cultivation in wastewater and by valorising side-products, as in the case of FLEXBY, given that it allows for offsetting the biomass production costs, which is a hotspot in microalgae biorefineries (SABANA 2020, Mehariya et al., 2021, Rafa et al., 2021, Sivaramakrishnan et al., 2023, Geng et al., 2025). Furthermore, the policy framework, such as subsidies, renewable energy targets, and research incentives, plays a critical role in determining the financial viability of microalgae biofuels, with localised factors like labour costs and resource access influencing competitive advantage over conventional fuels (Roles and al., 2021).

From a social perspective, the development of microalgae-based biofuel industries can support rural and local economic growth through job creation in cultivation, harvesting,

processing, and value-added manufacturing. Such projects can diversify local economies and enhance community resilience, offering more equitable socio-economic opportunities in line with the UN SDGs. From feedstock production to machinery production and operation, FLEXBY has immense job creation potential. EurObserv-ER reported 149,700 direct and indirect jobs in biofuels in the EU 27 in 2022, up slightly from 148,300 in 2021 (JRC 2023; EurObserv-ER 2022). This was projected by IRENA to continue into 2023 (IRENA, 2024).

Reviews of social sustainability in bioenergy systems show that microalgae initiatives can contribute positively to employment and community development, although social aspects are still less frequently assessed compared with environmental and economic dimensions (Murphy, F., 2024). At the same time, broader S-LCA applications in bioenergy further underline the variability of social risks (such as labour rights, governance, and health and safety) across regions and value chains, stressing the need for context-specific evaluation (Ugolini et al., 2025).

Recent research underscores the importance of integrating socio-economic considerations into early-stage assessments of microalgae biorefineries. Pérez López et al. demonstrate that life cycle costing (LCC) can be systematically combined with screening-level Social Life Cycle Assessment (S-LCA) to identify potential social hotspots and opportunities in emerging technologies before they reach commercial maturity. This integrated approach enables developers and policymakers to better understand how cost structures, labour intensity, technological choices, and supply-chain configurations influence social performance, serving as a meaningful approach for guiding sustainable scale-up of algae-based biofuel systems.

## 4 Policy frameworks and incentives related to biofuels from Microalgae

The European policy landscape surrounding advanced biofuels is currently shaped mostly by the revised EU Renewable Energy Directive (RED III), which forms the core regulatory driver for the sector. RED III significantly increases the Union's climate and energy ambition by raising the binding target for renewable energy consumption to 42.5% by 2030, with an aspirational level of 45%. Within the transport sector, member states must meet either a 14.5% reduction in greenhouse gas (GHG) intensity of

transport fuels or achieve a minimum 29% share of renewable energy in final transport energy consumption by 2030.

These requirements place advanced biofuels (particularly those derived from non-food, non-land-competitive feedstocks such as microalgae or other feedstock of non-biological origin) at the centre of national compliance strategies, as they are among the few fuel categories that can deliver significant GHG reductions without competing with agricultural resources. To enable this transition, the directive sets a binding 5.5% sub-target for advanced biofuels listed in Annex IX Part A by 2030. Both FLEXBY feedstock (a) Algae cultivated on land in ponds or photobioreactors, and (f) Animal manure and sewage sludge are included in Annex IX Part A.

Complementing RED III, the EU has introduced sector-specific measures that further stimulate demand for advanced biofuels. Under the ReFuelEU Aviation Regulation, fuel suppliers at EU airports must provide a steadily increasing share of sustainable aviation fuels, including advanced biofuels. Likewise, the FuelEU Maritime Regulation imposes progressively stricter limits on the greenhouse-gas intensity of marine fuels. Together, these instruments create additional, long-term market pull for advanced biofuels across two of the most difficult-to-decarbonise transport sectors.

Beyond regulatory compliance, broader sustainability considerations also draw from established international frameworks. The Roundtable on Sustainable Biomaterials (RSB) provides a comprehensive set of principles and criteria, including social impact screening tools that are widely used in bioenergy projects. These frameworks guide the assessment of social co-benefits such as employment generation and improvements in quality of life resulting from enhanced air quality. The latter is a particularly important aspect for biofuels that replace fossil-derived heating oils or lignite-based heat and power systems, which are significant sources of particulate matter (PM), sulphur oxides (SO<sub>x</sub>), and nitrogen oxides (NO<sub>x</sub>).

Air quality improvements form a key element of the social sustainability dimension in the project's assessment. Evidence from previous studies, including reviews by Tomlins (2021), Sippula et al. (2019), and Williams et al. (2018), indicates that replacing fossil fuels with biomass-derived fuels generally results in reduced emissions of PM, NO<sub>x</sub>, and SO<sub>x</sub>, depending on combustion characteristics and fuel upgrading. The "better air quality" indicator used in the sustainability assessment therefore not only captures direct emission reductions but also reflects wider societal benefits associated with

transitioning to cleaner energy systems. Evaluation of data from experiments on fuel testing later stages of FLEXBY, would inform this indicator.

Internationally, policy support for microalgae-based fuels is growing, particularly through research and innovation programmes. In the United States, the Department of Energy and the National Renewable Energy Laboratory (NREL) prioritise algae-based conversion pathways through dedicated initiatives and techno-economic studies (NREL, 2025). In India, the government promotes advanced and third-generation biofuels through national biofuel policies and targeted support programmes (VekPolicy, 2025).

Overall, these policies create a favourable environment for microalgae and sludge-derived fuels, positioning them as key contributors to the EU Green Deal objectives.

## 5 Life Cycle Costing and Social LCA

### 5.1 Goal and scope

This preliminary Social Life Cycle Assessment (S-LCA) and Life Cycle Costing (LCC) study aims to provide an early-stage understanding of the project's potential social impacts and cost implications from its cradle-to-gate life cycle. These assessments serve as a foundation for the more detailed, comprehensive evaluation to be carried out at the end of the project. At this stage, the goal is to position the project within the current state of the art, identify strengths and areas for improvement, and begin screening relevant social and economic hotspots that may influence design and strategic choices moving forward. The scope is intentionally exploratory, focusing on key life-cycle stages and dominant cost drivers to support informed decision-making as the project progresses. Initially, all stakeholders are considered for the social hotspot screening.

#### 5.1.1 Reasons, project goal and intended application

The preliminary LCC of the FLEXBY technology, following an attributional life cycle assessment approach, is conducted to provide an early estimation of its economic performance, focusing on the cradle-to-gate phase of the integrated demonstrator. This assessment includes the raw materials costs, energy costs, capital costs of the machinery required for the microalgae cultivation, microwave-assisted pyrolysis, reforming, and upgrading, as well as the costs of replacement parts over the system's

lifetime. Decommissioning costs are not yet considered at this stage and will be addressed in the final LCC when more reliable component-specific data becomes available (D7.3 to be delivered in M44).

The analysis follows established life-cycle costing principles and is aligned with the system boundaries and assumptions defined in the preliminary LCA to ensure methodological consistency; however, some extensions have been made to the model presented in D7.1. Based on available experimental and simulated data, the study quantifies the main cost contributions associated with electricity and materials use, equipment operation, and component replacement across the key FLEXBY process steps. As an early-stage assessment, its purpose is to identify major cost hotspots, critical assumptions, and parameters driving economic performance, thereby supporting technology optimisation and preparing the ground for a more comprehensive and integrated sustainability evaluation later in the project.

### 5.1.2 Intended audience

This preliminary report is intended primarily for internal use within the FLEXBY consortium. Its main purpose is to provide an early economic perspective on the FLEXBY system, laying down data collection requirements, supporting collaborative work between partners by highlighting key cost drivers, identifying potential optimisation opportunities, and guiding further development of the technology. By translating the technical and environmental insights from earlier project stages into a lifecycle-based cost framework, this report contributes to a shared understanding of the economic feasibility and challenges associated with the FLEXBY process.

As a public deliverable, the report may also serve as a useful reference for external technical stakeholders interested in the cost analysis of emerging biofuel technologies, particularly those involving pyrolysis-based conversion routes. Given the methodological diversity and limited availability of LCC and S-LCA studies for similar systems, this document provides a transparent and well-documented case study that can support the broader scientific and industrial community. In doing so, it helps advance current discourse on lifecycle costing approaches for innovative biorefinery configurations and contributes to the foundation for future assessments.

### 5.1.3 Product system and function

The function of the FLEXBY system is to produce 1) advanced biofuel; 2) electricity from pyro-gas; and 3) produce biochar from biogenic waste streams, specifically microalgae cultivated in domestic wastewater and oily sludge generated by a wastewater treatment plant serving a dairy processing facility. There is also a fourth function that is not currently assessed in detail but may undergo experiments in the near future, which is the wastewater treatment by the microalgae during cultivation.

The FLEXBY technology life cycle starts with the microalgae production at wastewater treatment facilities, overseen by **A4F** in Lisbon, where two raceway ponds were installed and operated. The raceways were fed with secondary effluent and operated in batch mode without prior microalgae inoculation, allowing native (autochthonous) species to develop naturally. The process also shows a potential for wastewater treatment.

This is followed by dewatering of the microalgae, internal transportation of algal biomass, lipid extraction, transportation to the transportation to the CSIC at Asturias facilities in Northern Spain, for microwave pyrolysis and then the processing of the outputs of pyrolysis at the facilities of **US**. As of November 2025, the processes are operated in batch mode; however, Figure 1 illustrates the FLEXBY process as an integrated continuous system, beginning with the microwave pyrolysis of the microalgae.

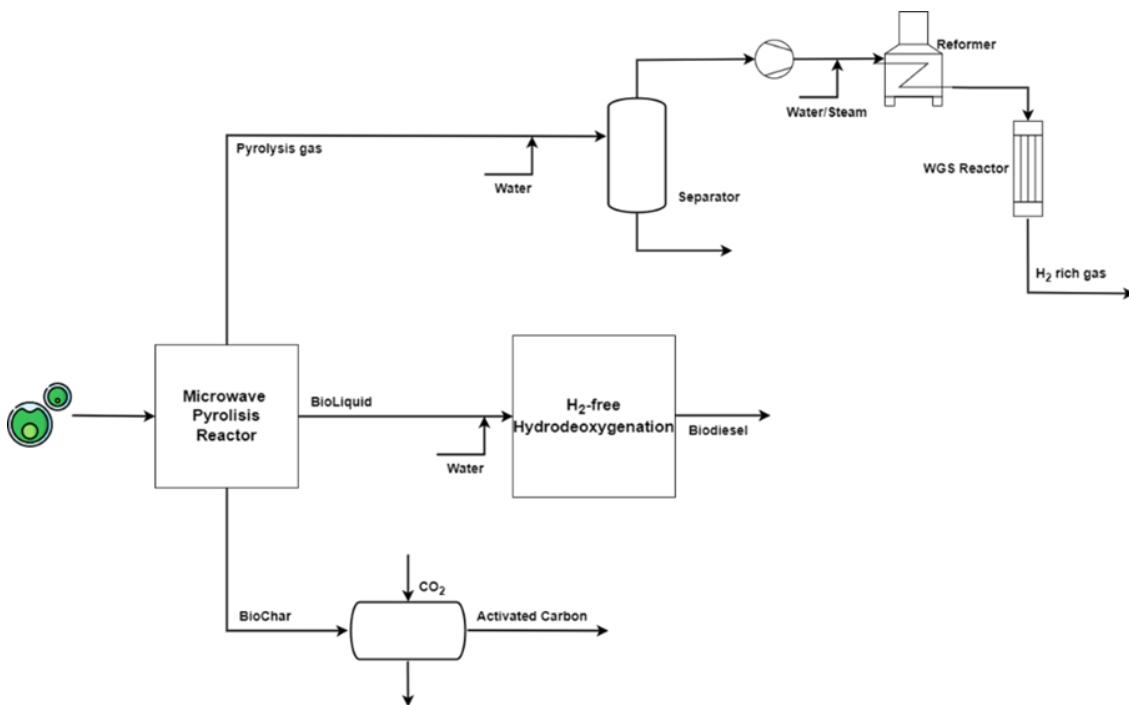



Figure 1: Block Flow Diagram of the FLEXBY process.

The feedstock is introduced into the MW pyrolysis reactor (with drying if required). The resulting three fractions are then collected and processed separately. The MW reactor operates at a maximum power of 3 kW and has a capacity of 2 kg of wet feedstock. The pre-design of the MW reactor, provided by **FRIMA**, is shown in Figure 2.

The operation phase of the unit is divided into 2 stages: the first stage is the drying process, hot air enters from the top and vapour is recovered to reduce the humidity of the feedstock; In the second stage, nitrogen is introduced (also from the top) to inert the environment before pyrolysis begins. The maximum temperature of the product reaches approximately 700°C, in line with literature data (Ferrera-Lorenzo et al., 2014).

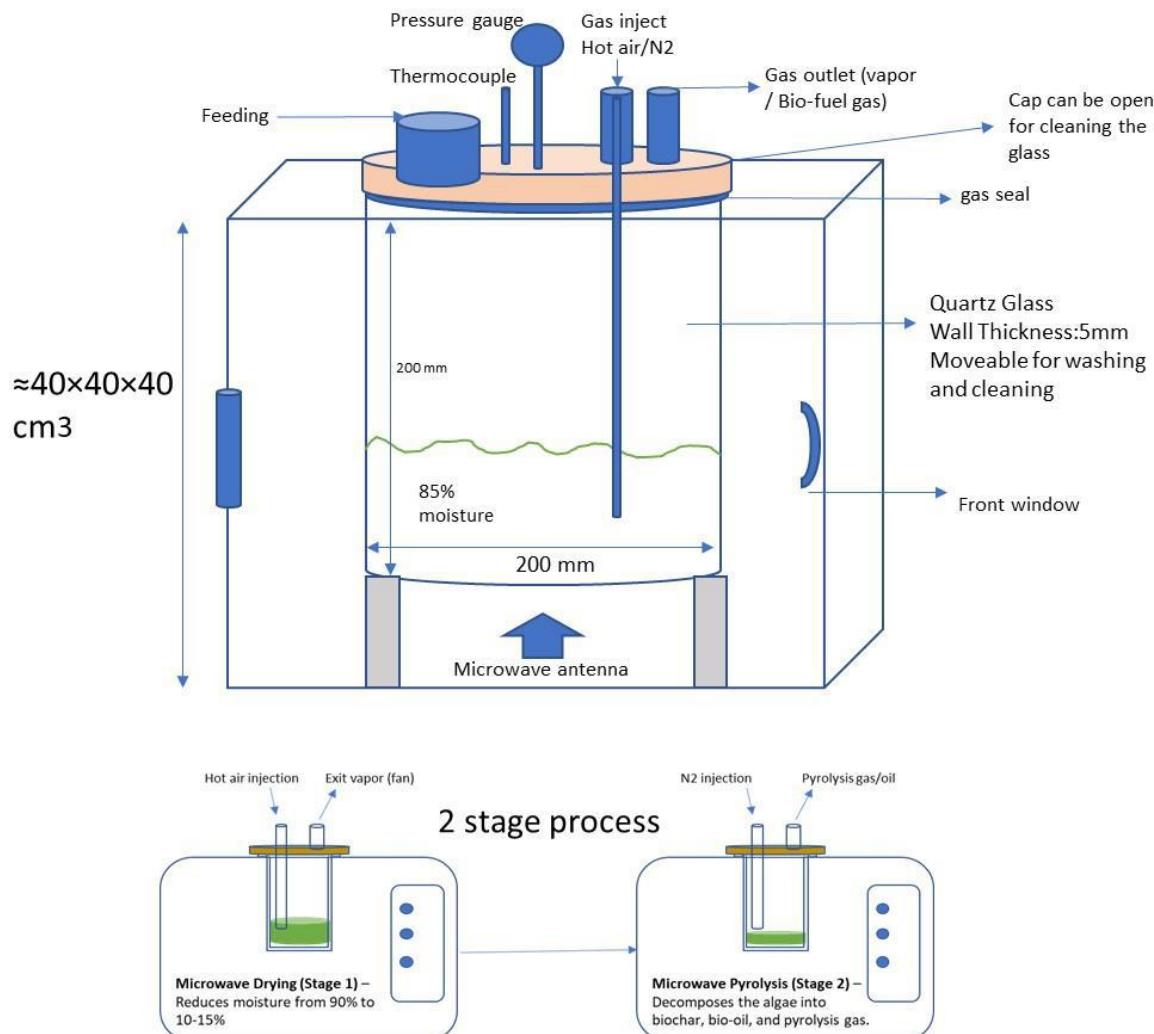



Figure 2 - Preliminary design concept of a microwave-assisted pyrolysis reactor operating in two stages: an initial drying mode followed by nitrogen ( $N_2$ ) injection and pyrolysis processing (from Deliverable 3.1)

For the bioliquid pathway,  $H_2$ -free hydrodeoxygenation is a batch process working at approximately 150 bar and 250-300 °C, with a residence time ranging from 1 to 12 hours. The experimental tests of this unit will require 25 to 50 mL of the bio-liquid mixture, mixed with 40 mL of water.

The pyrolysis gas must be post-processed to obtain  $H_2$ -rich gas. The preliminary process scheme consists of:

- A separator to remove water from the gas mixture,
- A reforming unit, which enables the nearly complete conversion of methane into hydrogen, carbon monoxide, and carbon dioxide,

- A water-gas shift (WGS) reactor, where water is added before the reaction to enhance hydrogen production. Pressures and temperatures have been selected based on literature data and industrial standards (Caballero et al., 2022; Saeidi et al., 2017). However, since the primary objective is hydrogen production for electric energy generation in a fuel cell, the reformer pressure is limited to 4 bar, aligning with the operating pressure required by fuel cells (Askaripour, 2019).

The final applications of the biochar fraction are still under investigation. Where possible, efforts will be made to reuse it along with the feedstock to enable the microwave heating process, and research will be conducted to investigate its use as a soil amendment, as a precursor to activated carbon and its use in coprocessing of cement. However, the physicochemical properties of the biochar will determine its suitability for these applications.

The lab-scale experimental tests will be conducted in batch mode. However, the integrated-demonstrator plant, which will be installed at US facilities, will operate continuously. The current study is based on simulation data for the integrated demonstrator plant. To ensure a stable flow of gas and liquid for post-processing, buffer units will be installed between the MW pyrolysis reactor and the rest of the process.

#### **5.1.4 Functional unit**

For the functional unit, the bioliquid fraction, which after undergoing further purification steps, results in the advanced biofuel, is considered the product of interest. The functional unit is 1 kg of biofuel produced that can be combusted for use in a transport vessel. All subsequent analyses are relative to the functional unit of 1 kg of biofuel. Biochar and a gas fraction are produced as valuable by-products. Hence, the results are also presented from the perspective of these by-products of corresponding amount of electricity produced from a solid-oxide fuel cell by utilising the pyro-gas and biochar produced.

#### **5.1.5 System boundaries**

Based on insights from all meetings with partners, it was decided to proceed with the cradle-to-gate system boundary, focusing on the components, transport and operation life cycle stages of the FLEXBY process. In addition to the operational phase, the assessment includes the raw material extraction and manufacturing stages related to the

required machinery, as well as the consumption of key operational inputs such as water and electricity and additional raw material (e.g. for developing the catalysts). This allows the study to capture both the embodied impacts of the equipment and the direct resource and energy use during operation.

The deliverable builds on D7.1, which focused on the operation stage, allowing for a detailed assessment of energy requirements and impact hotspots during operation while also enabling a comparison between conventional and MW pyrolysis systems. The operation stage has the most extensive primary and simulation data at the moment, which allows us to better understand process efficiencies, emissions, and resource consumption of FLEXBY's operational phase performance. The operational stage, particularly pyrolysis, reforming, and hydrodeoxygenation, is recognised as energy-intensive, especially when dealing with chemically heterogeneous and high-moisture biomasses (Chamkalani et al., 2020; Yu et al., 2022).

Most existing LCA studies on bio-oil production tend to stop at the pyrolysis stage and do not include subsequent upgrading steps into higher-value biofuels, which are critical to understanding the true sustainability of these systems (Yu et al., 2022; Elfallah et al., 2024). FLEXBY addresses this by including data on the post-processing stages already at the preliminary stage of the LCA.

Decommissioning and end-of-life stages of the machinery are not included in the current assessment. The exclusion is mainly due to the low technology readiness level (TRL) of the integrated FLEXBY demonstrator, for which reliable data on dismantling, waste treatment, recycling, and disposal are not yet available. These aspects are planned to be addressed in future LCA iterations as the technology matures and more representative end-of-life data become available.

### 5.1.6 Data requirements and data collection

Data for the preliminary LCC was gathered through regular technical exchanges and coordination calls with project partners, during which process conditions, operational strategies, and system configurations were jointly reviewed. The tailored Excel templates developed and distributed by **GD** for Deliverable 7.1 (see Annex 1 of Deliverable 7.1) were used to ensure consistent and structured data collection across partners. These templates, organised by process stage, included dedicated sections for inputs, outputs, energy use, and material flows, and were also designed for the LCC to capture

machinery-related information such as equipment specifications, capital costs, and replacement schedules.

In this assessment, data collection focused not only on operational expenditures (OPEX) but also on the capital investment (CAPEX) associated with the integrated demonstrator. Accordingly, the LCC incorporates preliminary cost data from **PMI**'s Deliverable D2.3, including equipment sizing and baseline cost estimates from the energy balance and process modelling work. This information was complemented with targeted inputs from key partners: **FRIMA** provided detailed data on microwave reactor components and replacement parts; **US** contributed information regarding upgrading reactors and catalyst requirements; **A4F** supplied cultivation-related data relevant to microalgae feedstock costs; and **IDE** supported assumptions regarding biochar handling and potential valorisation.

Where primary data was still unavailable (particularly for components not yet built or tested) gaps were filled using expert estimates, simulation outputs, or values derived from literature to ensure completeness and consistency ahead of the final LCC and S-LCA.

### 5.1.7 Data quality control

Data quality was not assessed for this task but will be included in future studies.

### 5.1.8 Assumptions

Given the early stage of development of the FLEXBY process, the preliminary LCC and S-LCA rely on a combination of primary data, partner-provided estimates, process simulations, and literature values. Whenever direct cost data or detailed operational information were not available, assumptions were formulated based on analogous technologies and expert judgment from involved partners. All assumptions are documented in detail within the process-specific inventory tables of the LCI section (5.2.1.7).

A simplified operational lifetime of 20 years is assumed for the integrated demonstrator, serving as the basis for annualising capital expenditures. To capture the behaviour of components with shorter service lives, the studies also include replacement parts and consumables, based on partner inputs and preliminary durability estimates (e.g.,

microwave components from **FRIMA**, piping from **US**). Decommissioning costs are not included at this stage but will be included in upcoming LCA studies.

This approach ensures methodological alignment with the early-stage LCA and provides a coherent foundation for cost modelling. At this stage, FLEXBY technologies are broadly positioned at TRL 3-4, with microalgae cultivation efforts advancing the state of the art by developing and testing intensified operational procedures for wastewater-based cultivation, assessing biomass suitability for biofuel production, and improving system understanding to enhance control, replicability, and productivity.

### 5.1.9 Multifunctionality

According to the ISO 14040-44, allocation in Life Cycle Assessment (LCA) involves the distribution or allocation of input or output flows from a process or product system among multiple products or functions, when a process generates more than one product or service. A methodological approach is required to choose a proportion to allocate burdens. The choice of allocation, whether based on physical properties (e.g., mass or energy content), economic aspects, or system expansion, can significantly influence the results and interpretation of the LCA. The FLEXBY project is still in the process design and lab experiments stage, and after process optimisation, more by-products may be identified within the process and valorised within the system. Currently, the following cases of multifunctionality exist within the project:

1. The microalgae growth phase serves the dual purpose of treating the wastewater as well as producing microalgae that can be valorised for fuel production. This implies that, in addition to producing the microalgae feedstock, there is a wastewater input as avoided waste, treated wastewater that could be a by-product, once its quality is tested and a final use can be defined. The wastewater treatment is currently not the main focus of the project, and only nitrogen and phosphorus measurements are tracked; therefore, the wastewater treatment was modelled as a partial wastewater treatment, using the process 'Treatment of wastewater, unpolluted' from ecoinvent 3.10. The input wastewater was handled using system expansion, with the process of 'market for wastewater treatment being the avoided waste treatment process'.

A scenario analysis was conducted to compare a scenario where wastewater is released back to the treatment facility and another where partial wastewater

treatment by microalgae is considered and thereby reducing the impacts of further wastewater treatment required before releasing the water to the environment.

2. The pyrolysis process produces biofuels, pyro-gas and biochar. The exact applications of the outputs of the process are unclear at this preliminary stage, and therefore system expansion was not performed; instead, the allocation by physical property was performed, using 'mass' based allocation.
3. Ammonia, which can be valorised and reused. The valorised ammonia was handled with system expansion.
4. Processing of the bioliquid fraction to produce a liquid biofuel for heavy transport, as well as electricity from the gaseous fraction of this stream: the inventory was partitioned or allocated between the bioliquid fuel fraction and gaseous fraction by mass.

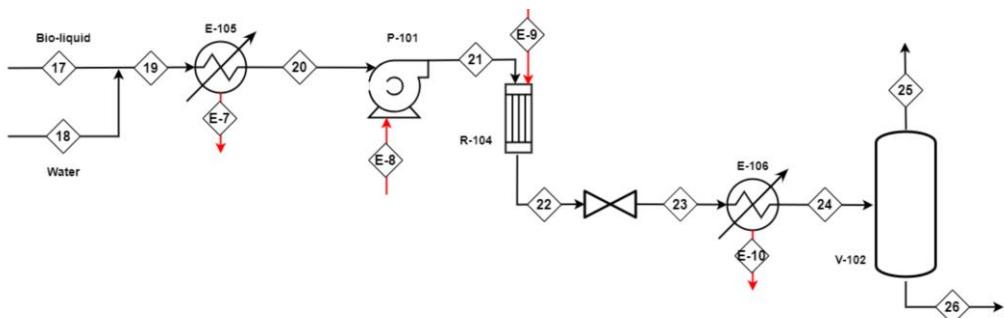



Figure 3 - Process Flow Diagram of bio-liquid refining, with its associated streams, as in Deliverable 2.3

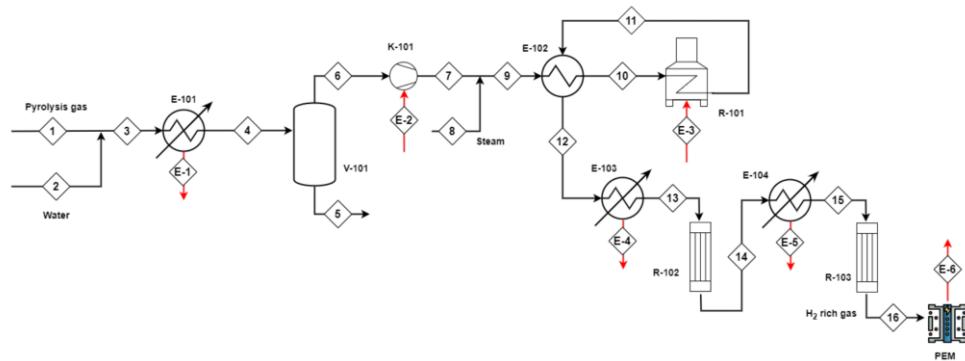



Figure 4 - Process Flow Diagram of pyrolysis gas post-processing, with its associated streams, as in Deliverable 2.3. Note that the latest technological development of FLEXBY include a SOFC cell and not a PEM cell

### 5.1.10 Calculation

The calculations are performed with the open-source software openLCA, v2.5.0, with ecoinvent v3.11 cutoff unit processes as background database for LCC and with SOCA v4 for the S-LCA.

The LCC analysis focuses on monetary costs, assessing capital expenditures, operational expenditures, and replacement costs over the assumed system lifetime.

### 5.1.11 Interpretation of results

The interpretation of results in this deliverable provides an initial understanding of the economic and social performance of the FLEXBY system at its current development stage, with a structured discussion of the main cost drivers, methodological assumptions, and uncertainties affecting the preliminary LCC, as well as an overview of the social hotspots and stakeholder-related risks emerging from the S-LCA screening. Because the two assessments address different dimensions of sustainability, the interpretation is presented in two dedicated sections (one for LCC and one for S-LCA) each outlining the key insights, limitations, and implications for the next steps toward the final integrated sustainability study at Month 48.

### 5.1.12 Critical review

Not considered for this study. However, the results are shared and discussed with the FLEXBY consortium.

## 5.2 Modelling and life cycle inventory

The product system for the preliminary LCC follows the same organisation used in the environmental LCA, reflecting the processes that define the cradle-to-gate stage of the FLEXBY technology. All processes in the foreground system are consistently identified using the naming conventions established during the LCA modelling phase.

The product system begins with the feedstock supply processes. Feedstock 2 (microalgae) includes cultivation and harvesting, while Feedstock 5 (wastewater sludge from dairy treatment plants) is taken directly from wastewater treatment. Both feedstocks undergo drying at **CSIC** facilities prior to pyrolysis. The resulting products (bio-oil, pyro-gas, and biochar) are then routed to their respective upgrading or handling processes.

Consistent with the environmental LCA in D7.1, a feedstock flowrate of 100 kg/h is assumed, in alignment with **PMI**'s process modelling. Operational costs and machinery costs are calculated using data established in D2.3 with this throughput, together with the energy demands, material requirements, and equipment specifications collected from partners. Electricity consumption cost was accounted for with assumptions from the ecoinvent database.

The details of LCI data can be found in section 5.2.1.7

### 5.2.1.1 Microalgae growth and harvesting

At the current stage, the microalgae cultivation and harvesting stage is carried out in a 1 m<sup>3</sup> and 5 m<sup>2</sup> photosynthetic area capacity raceway in Lisbon, at the wastewater treatment facility, which provides wastewater for treatment and algae growth. The microalgae produced is characterised in the deliverables *D2.2 -Report on microalgae consortium Characterization-* and *D2.1 -Physicochemical sheet for the biomass feedstock-*.

The equipment was modelled initially using the equipment inventory provided by **A4F** for the current FLEXBY demonstrator scale. At this stage of development, costs are based on partner-supplied estimates for all major units, including:

- Raceway pond with paddlewheel agitation, representing the primary cultivation unit.
- Harvesting pump, used to transfer the biomass–water mixture from the raceway to the separation units.

- Settler for primary physical separation, which performs the main harvesting step.
- The microalgae have an uptake of CO<sub>2</sub> during its growth phase, A4F is currently conducting experiments to measure this, however, values for this study were taken from literature.
- At this stage we are still considering the microalgae cultivation (in one scenario) because at this point the algae are cultivated primarily for FLEXBY. However, the aim of the project is to provide the service for urban wastewater treatment and use the waste microalgae resulting from it (SABANA, 2020).

**A4F** identified the species of microalgae grown in the wastewater as two predominant species of the *Scenedesmus* genus, which has already been studies for biofuel applications because its significant lipid content and growth rate (Deliverable 2.2) a consistent proportion is possibly of the *Desmodesmus* subgenus.

### 5.2.1.2 Feedstock drying and pyrolysis

Both processes of feedstock drying and pyrolysis rely on machinery supplied by **FRIMA** and will be operated and tested at **CSIC** Facilities.

**FRIMA** has provided preliminary cost estimates for the complete microwave (MW) pyrolysis unit, including the microwave cavity, control panel and auxiliary components. The material composition of the microwave pyrolysis. These capital costs have been incorporated directly into the LCC model and annualised according to the standard 20-year economic lifetime used throughout the assessment.

In addition to the overall equipment lifetime, **FRIMA** supplied specific durability estimates for the magnetron, the core component that generates microwave energy, at 10.000 hours. Therefore, the LCC includes scheduled replacement costs at the intervals indicated by **FRIMA**. These replacement parts are reflected as operational expenditures over the 20-year period.

Moreover, microwave pyrolysis requires a continuous nitrogen flow to operate. **FRIMA** provided the nitrogen consumption rate, which has been integrated into the model as a recurring operating cost. The nitrogen demand is treated as proportional to the operational hours of the system.

Energy consumption for both drying and pyrolysis is based on the mass and energy balance results shared by **PMI** and the estimation of initial moisture content of the feedstocks provided by CSIC in the D2.1 report. These simulations directly determine electricity-related operating costs, using Spanish electricity price assumptions for consistency with the LCA and other processes in the LCC.

### **5.2.1.3 Gas fraction processing: Separation from ammonia, WGS, and steam reforming**

For the gas fraction processing stage cost estimates were primarily provided by **PMI**, with additional refinement from **US**, especially additional estimations regarding component-specific replacement rates and catalyst requirements. Using Deliverable 4.1-*Report on flexby unique hybrid multifunctional catalysts for all flexible biofuels process at lab-scale* – as a reference, **US** supplied details on the catalysts considered for the WGS and reforming steps, including both a commercial Fe–Cr catalyst and the homemade formulations developed within FLEXBY based on Fe and Fe–Ni supported on ceria–alumina. These inputs, together with raw material needs and indicative lifetimes, were incorporated into the operational expenditure model.

As for the other FLEXBY processes, a 20-year lifetime is assumed for the integrated demonstrator, while individual components follow their own maintenance cycles. Key replacement items include mass-flow controllers, quartz liners, WGS reactor stainless-steel tubes, electric furnaces/heaters used as heat exchangers. And tubing maintenance. **US** also provided raw material and catalyst information for both WGS and reforming steps, which is incorporated into operational expenditures.

### **5.2.1.4 Bioliquid processing: H<sub>2</sub>-free hydrodeoxygenation**

For the bioliquid upgrading stage, data collection followed the same path as the gas fraction processing. Estimate cost inputs were primarily provided by **PMI** and further refined by **US**, who supplied updated estimates for equipment components, replacement frequencies, and catalyst consumption. Again, using Deliverable 4.1 as reference, **US** also specified the catalysts developed for the HDO pathway, including the lab-made activated-carbon-supported formulations based on Ru, Ni and Fe. These catalysts differ from those designed for the gas fraction upgrading route, reflecting the different reaction environments involved.

As with the rest of the system, a 20-year lifetime is assumed for the integrated demonstrator, while individual units follow shorter maintenance or replacement cycles based on partner specifications.

The main recurring cost elements include reactor components, quartz liners, heating elements, and tubing, which follow similar replacement intervals to those used in the gas fraction processing train. Additional costs arise from catalyst usage, for which **US** provided the required raw material quantities and indicative replacement rates.

#### 5.2.1.5 Biochar handling

In the initial FLEXBY system concept, biochar was hypothesised to be reused internally as a catalytic support material. However, ongoing tests performed by **CSIC** indicate that the biochar produced under pyrolysis, particularly when the process is optimised for maximising pyro-gas and bio-oil yields, which is the goal of the FLEXBY system, exhibits a high ash content, which would make the considered physical activation using CO<sub>2</sub> inefficient. This significantly reduces its suitability for in-situ reuse as a catalyst support. As a result, chemical activation is being considered, but further data are needed before this option can be incorporated into the economic model. For this assessment, the system assumes the purchase of commercial activated carbon to fulfil the support role originally intended for activated biochar. Costs associated with this external procurement are included in the operational expenditures of the pyrolysis stage.

In addition to activation-based reuse pathways, another potential in-situ use of biochar is as a microwave precursor, and it is also being considered. Experimental validation would be required, particularly once microwave equipment becomes available at **CSIC**, before this pathway can be assessed from a technical, environmental, or economic perspective.

At the same time, alternative valorisation routes, external to the system, for the non-activated biochar are being evaluated by **IDE** and **CSIC**. Current options under consideration include:

- Use as a soil amendment, depending on compliance with agronomic and regulatory requirements.
- Application as an additive in construction materials, where its physical properties may offer functional benefits.

In both cases, the biochar is not treated as a waste stream in the FLEXBY system. Instead, it is regarded as a co-product with potential value, although no income or avoided-cost credit is modelled at this stage due to insufficient data. These aspects will be further examined and refined in the final LCC once experimental characterisation and market suitability assessments become available.

#### 5.2.1.6 Modelling machinery

The machinery of unit processes considered from cradle to gate was modelled with expert inputs and literature data and datasets adapted from ecoinvent. The overview of machinery used is documented along with associated costs, lifetime and assumed capacity in Table 1. The overall FLEXBY system was assumed to have an operational lifetime of 20 years. (Corollary assumptions: ideal performance, no complete component failures considered, only regular replacements for specific parts with lifetimes shorter than 20 years)

When considering machinery, the information researched or requested included the following:

- Material composition of a product
- Energy required for production of machinery, and the emissions or wastes generated, as the technology evolves, their relationship with product scale and design choices will be investigated
- Energy required to run the machinery
- Any other operating inputs
- Data on maintenance and repair and replacement
- Lifetime of the machinery and its dependence on repair and maintenance or other factors
- For the SOFC cell, 30k euro value was used, based on the GA (pg 138), and the assumption that it operates at 80% energy efficiency (page 15):

#### 5.2.1.7 LCI data

The following tables contain the details of the data used in the LCI.

Table 1 - Overview of FLEXBY system CAPEX costs

| Component (with energy/material flows for PMI)                    | Stream in                                              | Cost (€)                           |
|-------------------------------------------------------------------|--------------------------------------------------------|------------------------------------|
| Raceway with paddlewheel                                          | Feedstock                                              | 8,100                              |
| Harvesting pump                                                   | Feedstock                                              | 240                                |
| Settlers                                                          | Feedstock                                              | 200                                |
| microwave pyrolysis (2.45 GHz, 3 kW, able to operate up to 3 bar) | Feedstock                                              | 200,000                            |
| E-101 - heat exchanger                                            | Gas fraction                                           | 9,000                              |
| V-101 - flash separator                                           | Gas fraction                                           | 1,000                              |
| K-101 - compressor                                                | Gas fraction                                           | 13,000                             |
| E-102 - heat exchanger                                            | Gas fraction                                           | 4,000                              |
| R-101 - steam reformer                                            | Gas fraction                                           | 100,000                            |
| E-103 - heat exchanger                                            | Gas fraction                                           | 3,000                              |
| R-102 - WGS reactor                                               | Gas fraction                                           | 1,000                              |
| E-104 - heat exchanger                                            | Gas fraction                                           | 2,000                              |
| R-103 - WGS reactor                                               | Gas fraction                                           | 1,000                              |
| E-105 - heat exchanger                                            | Bioliquid                                              | 8,000                              |
| P-101 - compressor pump                                           | Bioliquid                                              | 1,000                              |
| R-104 - HDO                                                       | Bioliquid                                              | US estimate: 35,000<br>RPO: 65,000 |
| E-106 - heat exchanger                                            | Bioliquid                                              | 6,000                              |
| V-102 - separator                                                 | Bioliquid                                              | 1,000                              |
| SOFC                                                              | 1. Gas fraction and<br>2. gas fraction of<br>bioliquid | 30,000                             |
| Mass flow controllers                                             | Overall                                                | 12,000                             |
| Quartz liners                                                     | Overall                                                | 1,000                              |
| Tubing maintainence                                               | Overall                                                | 3,000                              |
| Cement coprocessing (still adding<br>machinary/process)           | Biochar                                                |                                    |
| Soil amendment (still adding<br>machinary/process)                | Biochar                                                |                                    |

Table 2 - overview of FLEXBY system OPEX inputs related to machinery energy requirements

| Component (with energy/material flows for PMI)                    | Stream in    | microalgae scenario (feedstock 2) | dairy sludge scenario (feedstock 5) | Unit     |
|-------------------------------------------------------------------|--------------|-----------------------------------|-------------------------------------|----------|
| Raceway with paddlewheel                                          | Feedstock    | 0.066                             | -                                   | kWh/kg   |
| Harvesting pump                                                   | Feedstock    | 0.051                             | -                                   | kWh/kg   |
| Settlers (100/130 L volume)                                       | Feedstock    | -                                 | -                                   | kWh/hour |
| microwave pyrolysis (2.45 GHz, 3 kW, able to operate up to 3 bar) | Feedstock    | 8                                 | 8                                   | kWh/hour |
| E-101 - heat exchanger                                            | Gas fraction | 1.16                              | 1.15                                | kWh/hour |
| V-101 - flash separator                                           | Gas fraction |                                   |                                     | kWh/hour |
| K-101 - compressor                                                | Gas fraction | 0.09                              | 0.06                                | kWh/hour |
| E-102 - heat exchanger                                            | Gas fraction |                                   |                                     | kWh/hour |
| R-101 - steam reformer                                            | Gas fraction | 1.64                              | 2.45                                | kWh/hour |
| E-103 - heat exchanger                                            | Gas fraction | 0.68                              | 0.76                                | kWh/hour |
| R-102 - WGS reactor                                               | Gas fraction |                                   |                                     | kWh/hour |
| E-104 - heat exchanger                                            | Gas fraction | 0.27                              | 0.31                                | kWh/hour |
| R-103 - WGS reactor                                               | Gas fraction |                                   |                                     | kWh/hour |
| E-105 - heat exchanger                                            | Bioliquid    | 4.06                              | 3.92                                | kWh/hour |

|                         |                           |       |       |          |
|-------------------------|---------------------------|-------|-------|----------|
| P-101 - compressor pump | Bioliquid                 | 0.01  | 0.01  | kWh/hour |
| R-104 - HDO             | Bioliquid                 | 14.04 | 11.75 | kWh/hour |
| E-106 - heat exchanger  | Bioliquid                 | 1.31  | 1.33  | kWh/hour |
| V-102 - separator       | Bioliquid                 | -     | -     | kWh/hour |
| SOFC                    | Gas fraction              | 3.66  | 5.13  | kWh/hour |
|                         | Gas fraction of bioliquid | 22    | 37.3  | kWh/hour |

Table 3 - Overview of prices for water and electricity - OPEX

| Flow                      | Ecoinvent 3.11 | Unit     |
|---------------------------|----------------|----------|
| Electricity price (solar) | 9.77E-02       | EURO/kWh |
| tap water                 | 3.97E-04       | EURO/kg  |

Table 4 - Overview of energy and consumables (aside from catalysts)

| Partner     | Energy costs                                         | Value | Unit                              |
|-------------|------------------------------------------------------|-------|-----------------------------------|
| <b>A4F</b>  | electricity to produce 1 kg dry weight of microalgae | 238   | kJ per kg dry weight              |
| <b>A4F</b>  | electricity to harvest 1 kg dry weight of microalgae | 8.8   | kWh per kg dry weight             |
| <b>CSIC</b> | electricity for drying                               | 0.64  | kWh per kg water to be evaporated |
| <b>CSIC</b> | electricity for pyrolysis                            | 3.7   | kWh per kg of pyrolysis feedstock |

Table 5 - Overview of costs and characteristics of catalysts

| Catalysis precursor                      | Stream       | Quantity precursor | Cost (EUR)/kg |    | Provided by          |
|------------------------------------------|--------------|--------------------|---------------|----|----------------------|
| Iron (III) nitrate nonahydrate           | Bioliquid    | 8 wt.%             | tbd           | 2g | PMI/US               |
| Nickel (II) nitrate hexahydrate          | Bioliquid    | 8 wt.%             | tbd           | 2g | PMI/US               |
| Ruthenium (III) nitrosyl nitrate         | Bioliquid    | 2 wt.%             | 6             | 2g | PMI/US               |
| Acetone                                  | Bioliquid    |                    |               | 2g | PMI/US               |
| Activated Carbon DARCO,<br>Sigma Aldrich | Bioliquid    |                    | 2.52          | 2g | Business<br>Analitiq |
| Fe2O3                                    | Gas fraction | 15 wt.%            |               | 2g | PMI/US               |
| Fe2O3 + NiO                              | Gas fraction | 15 wt.% + 15 wt.%  |               | 2g | PMI/US               |
|                                          | Gas fraction |                    |               | 2g | PMI/US               |
| CeO2/Al2O3                               | Gas fraction |                    |               | 2g | Puralox,<br>Sasol    |

## 6 Life Cycle Costing

### 6.1 Limitations

This preliminary LCC is based on early-stage data, including preliminary equipment costs, simulation outputs, and partner estimates. Some processes, such as biochar activation, are not yet modelled, and decommissioning costs are excluded.

### 6.2 Life Cycle Inventory and modelling

The creation of life cycle models for the FLEXBY system follows the following steps:

- Data collection for the process machinery, operation and inflows and outflows
- Based on the data collection, creation of life cycle foreground models in the openLCA software.
- Linking of the foreground models to background data contained in the ecoinvent database for the environmental and cost assessment.

### 6.3 Sensitivity analysis

For this preliminary LCC assessment, the following scenarios have been evaluated: **two different feedstocks, 2 and 5**, in accordance with Deliverable 2.3 and both scenarios use **microwave pyrolysis**. Although the LCA model has been expanded with new data, we maintain the notation of **2.1** and **5.1**, as in the previous deliverable. Moreover, for feedstock 2 (microalgae), an additional case has been considered in which wastewater treatment is treated as a service, in line with the upscaling objective of FLEXBY (scenario **2.1-SE**). In this case, microalgae are assumed to be produced as part of wastewater treatment rather than solely for the purpose of biofuel production, and the LCC is adjusted accordingly using a **system-expansion** approach. Sensitivity analysis

Table 6 - Sensitivity analysis scenarios

| Scenario ID | Feedstock                             | Conversion method   | Notes                                                     |
|-------------|---------------------------------------|---------------------|-----------------------------------------------------------|
| 2.1         | Microalgae (Feedstock 2)              | Microwave pyrolysis | Base case for feedstock 2                                 |
| 2.1-SE      | Microalgae (Feedstock 2)              | Microwave pyrolysis | System expansion: wastewater treatment service considered |
| 5.1         | Dairy-based oily sludge (Feedstock 5) | Microwave pyrolysis | Base case for feedstock 5                                 |

## 6.4 Results and interpretation

The results, representing potential LCC hotspots are presented separately for the three main pathways of the FLEXBY system after the pyrolysis occur, hence biofuel (chosen as main reference) pyro-gas and biochar. The results are allocated to the three streams at the pyrolysis process based on the masses of the fractions produced. They are then further allocated based on mass whenever additional multifunctionality occurs as described in section 5.1.9. The results are given per 1 kg of biofuel and the corresponding amounts of the other fractions, as shown in Table 7.

Table 7 -Quantities of the product fractions for which the results are reported (in bold) and intermediate streams.

| Final products                              | S2.1 and S1-SE scaled to 1 kg biofuel | S5.1 scaled to 1 kg biofuel | Unit |
|---------------------------------------------|---------------------------------------|-----------------------------|------|
| Biofuels - cradle to gate (S25)             | 1                                     | 1                           | kg   |
| Electricity from the biofuel pathway        | 4.53                                  | 12.03                       | kWh  |
| H2 rich fraction from biofuel pathway (S26) | 0.76                                  | 1.65                        | kg   |
| H2 rich gas fraction                        | 0.62                                  | 0.42                        | kg   |
| Electricity from the gas fraction pathway   | 0.74                                  | 1.34                        | kWh  |
| Biochar                                     | 1.15                                  | 1.84                        | kg   |

## 6.4.1 Bioliquid pathway

### 6.4.1.1 Biofuel fraction

The cost structure of biofuel production from the pyrolysis bioliquid fraction is dominated by the **pyrolysis** and **H<sub>2</sub>-free hydrodeoxygenation (HDO)**, while **feedstock production** represents a smaller, but still relevant, contribution. Additional upgrading unit operations, including cooling, heat exchangers, compressors, and flash separation, remain marginal contributors, accounting for only very small fractions of the total life cycle cost.

The pyrolysis stage emerges as the largest cost contributor, driven primarily by **energy requirements** (52–61% of the total cost), with the **microwave pyrolysis unit** itself also representing a noticeable share (19–23%). This highlights that pyrolysis is both energy- and capital-intensive within the overall production pathway.

The HDO stage contributes the second-largest cost (19–21%). **Raw material inputs**, particularly those associated with **catalyst** production, form the main cost share, followed by **energy consumption**. Machinery-related costs for the reactor and auxiliary equipment remain negligible, indicating that HDO is largely operational rather than capital-intensive.

For microalgae-based feedstock, cultivation is another notable contributor to total costs. Most costs arise from raw materials, especially the fertilisers used for augmenting the yield, whereas energy used for cultivation and harvesting is comparatively minor.

*Table 8 - LCC results for the biofuel production from the bioliquid pathway of the pyrolysis*

| Process                                                               | Total result<br>[EUR] S2.1 | Total result<br>[EUR] S2.1-SE | Total result<br>[EUR] S5.1 |
|-----------------------------------------------------------------------|----------------------------|-------------------------------|----------------------------|
| Stage 3: Pyrolysis   energy requirements - ES                         | 5.54E+00                   | 5.54E+00                      | 5.31E+00                   |
| Stage 3: Microwave pyrolysis machinery                                | 2.07E+00                   | 2.07E+00                      | 1.98E+00                   |
| Stage 3: Pyrolysis   raw materials                                    | 8.67E-02                   | 8.67E-02                      | 8.31E-02                   |
| Stage 4.1.3: H2-free hydrodeoxygenation (HDO) (R-104) - Raw Materials | 1.39E+00                   | 1.39E+00                      | 1.33E+00                   |

|                                                                                           |          |           |          |
|-------------------------------------------------------------------------------------------|----------|-----------|----------|
| Stage 4.1.3: H2-free hydrodeoxygenation (HDO) (R-104) - Energy requirements               | 6.26E-01 | 6.26E-01  | 5.03E-01 |
| Stage 4.1.3: H2-free hydrodeoxygenation (HDO) (R-104) - Machinery                         | 1.21E-02 | 1.21E-02  | 1.16E-02 |
| Stage 4.1.1: Cooling, heat exchanger E-105 (S-20 out) - machinery - ES                    | 1.15E-03 | 1.15E-03  | 1.06E-03 |
| Stage 4.1.4: Heat exchanger E-106 - machinery                                             | 8.87E-04 | 8.87E-04  | 8.15E-04 |
| Stage 4.1.2: Compressor pump P-101 - energy requirements - ES                             | 4.46E-04 | 4.46E-04  | 4.28E-04 |
| Stage 4.1.1: Cooling water S18                                                            | 2.70E-04 | 2.70E-04  | 2.30E-04 |
| Stage 4.1.5. Flash separation (V-102) - machinery                                         | 2.00E-04 | 2.00E-04  | 1.92E-04 |
| Stage 4.1.2: Compressor pump P-101, machinery                                             | 1.40E-04 | 1.40E-04  | 1.28E-04 |
| Stage 4.1.4: Cooling bioliquid (S22/S23), heat exchanger E-106 - energy requirements - ES | 0.00E+00 | 0.00E+00  | 0.00E+00 |
| Stage 1: Feedstock Production and transport                                               | 8.60E-01 | -9.28E-01 | 0.00E+00 |
| flexby Overall maintainence and replacement                                               | 2.98E-02 | 2.98E-02  | 2.83E-02 |
| Stage 2: Drying and deodourization of feedstock - ES                                      | 0.00E+00 | 0.00E+00  | 0.00E+00 |

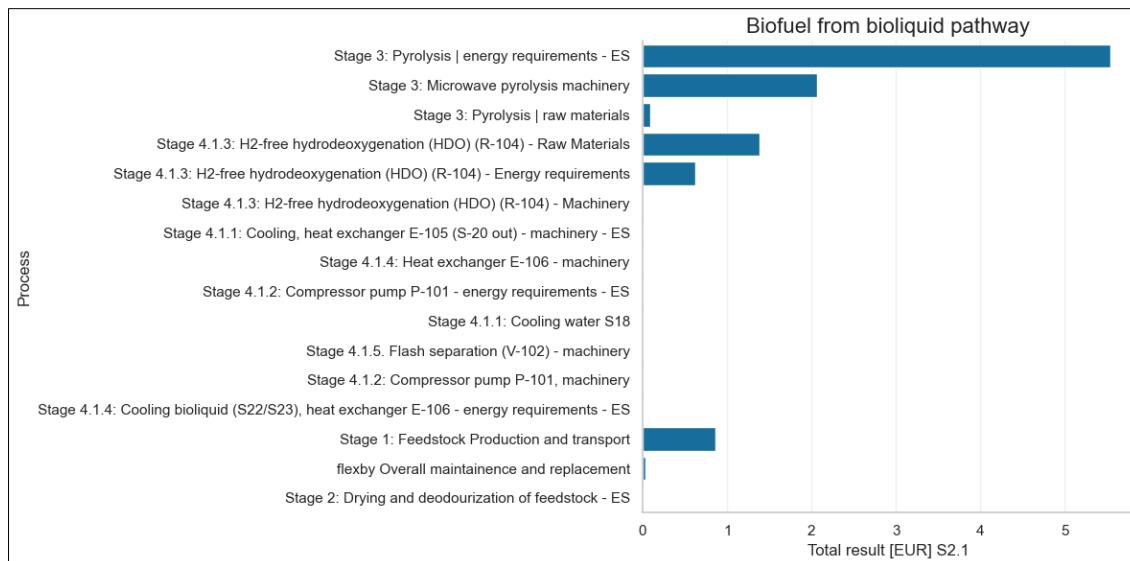



Figure 5 - Detail of scenario 2.1 of biofuel from bioliquid pathway

In the scenario with system-expansion credits for wastewater treatment (**S2.1-SE**), the total LCC is significantly reduced. Pyrolysis and HDO remain the dominant cost contributors, while microalgae cultivation effectively becomes a net cost reduction, as the service provided by wastewater treatment offsets much of the upstream burden. Maintenance and auxiliary unit operations continue to contribute only marginally.

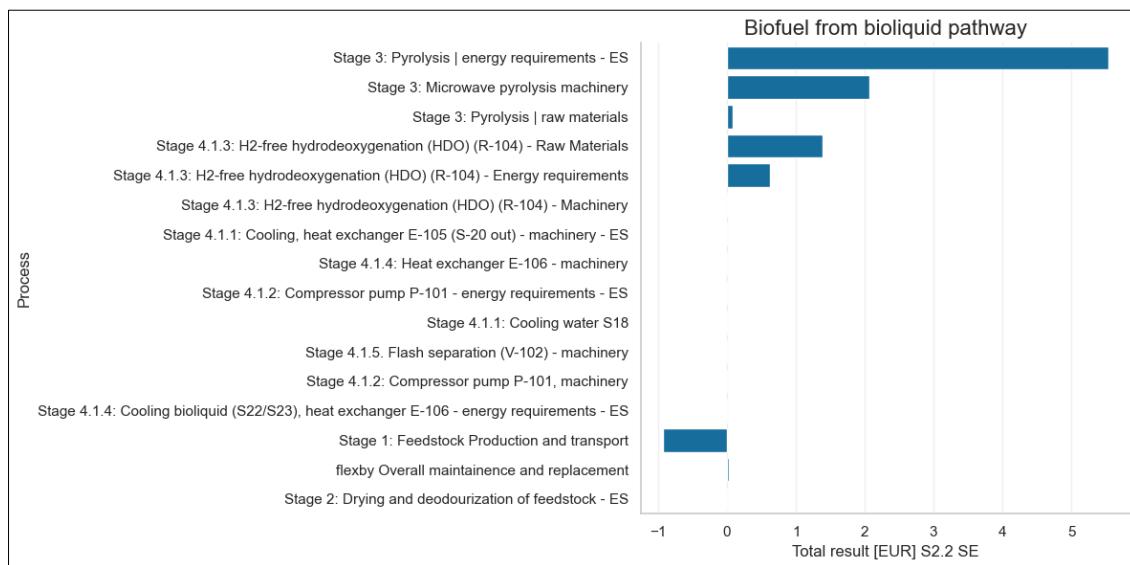



Figure 6 - Detail of scenario 2.1-SE of biofuel from bioliquid pathway

When considering dairy-based oily sludge as feedstock (**S5.1**), the total LCC is approximately 10% lower than conventional microalgae (**S2.1**), entirely due to the absence of feedstock production costs. Pyrolysis and HDO costs remain of similar

magnitude, demonstrating that conversion and upgrading costs are largely independent of the feedstock type.

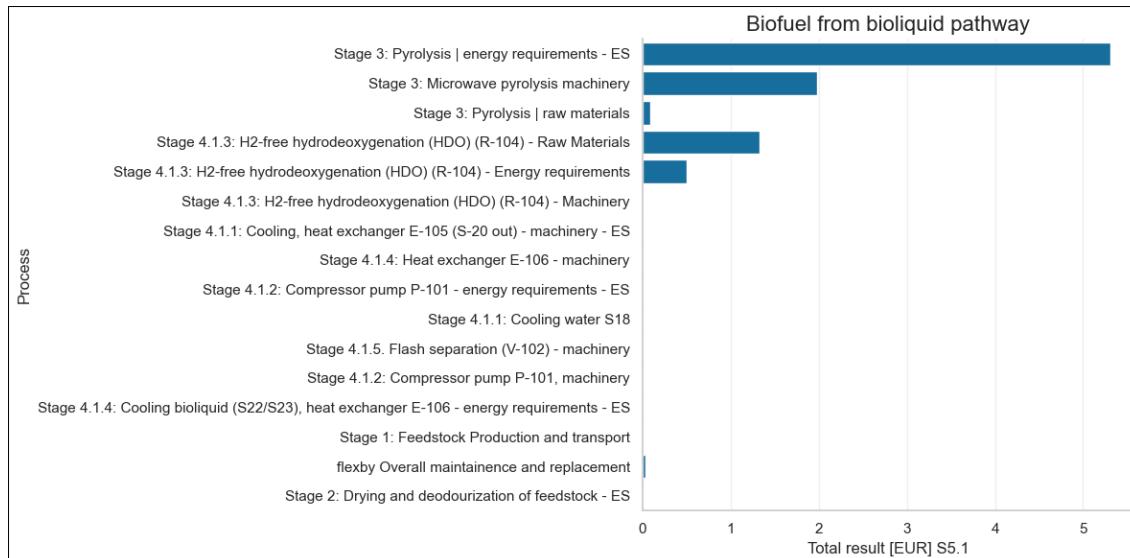



Figure 7 - Detail of scenario 5.1 of biofuel from bioliquid pathway

Scenarios **2.1-SE** and **5.1** behave very similarly. Both scenarios effectively eliminate feedstock cost and as a consequence, the total LCC of the two scenarios is nearly identical, differing by only about 1–2% in favour of scenario **2.1-SE**.

#### 6.4.1.2 Electricity from the gaseous fraction from the bioliquid pathway

The LCC for producing electricity from the gaseous fraction of the bioliquid pathway is again dominated by the conversion process (namely, dominated by the **pyrolysis** and **HDO**), with feedstock production and upgrading auxiliary operations contributing only marginally.

The **pyrolysis stage** is the largest cost contributor across all scenarios. **Energy requirements** are the main driver, followed by the capital costs of the **microwave pyrolysis unit**. Raw material costs associated with pyrolysis are minor.

The **HDO** stage is the second-largest contributor. Here, raw materials (mainly **catalysts**) represent the major cost share, with **energy consumption** being the second most significant component. Machinery costs remain negligible, indicating that HDO is largely operational rather than capital-intensive.

Table 9 - LCC results for the electricity production from the gaseous fraction of the bioliquid pathway of the pyrolysis

| Process                                                                     | Total result [EUR]<br>S2.1 | Total result [EUR]<br>S2.1-SE | Total result<br>[EUR] S5.1 |
|-----------------------------------------------------------------------------|----------------------------|-------------------------------|----------------------------|
| Stage 3: Pyrolysis   energy requirements - ES                               | 4.59E+00                   | 4.59E+00                      | 6.67E+00                   |
| Stage 3: Microwave pyrolysis machinery                                      | 1.71E+00                   | 1.71E+00                      | 2.49E+00                   |
| Stage 3: Pyrolysis   raw materials                                          | 7.18E-02                   | 7.18E-02                      | 1.05E-01                   |
| Stage 4.1.3: H2-free hydrodeoxygenation (HDO) (R-104) - Raw Materials       | 1.05E+00                   | 1.05E+00                      | 1.67E+00                   |
| Stage 4.1.3: H2-free hydrodeoxygenation (HDO) (R-104) - Energy requirements | 4.76E-01                   | 4.76E-01                      | 6.32E-01                   |
| Stage 4.1.3: H2-free hydrodeoxygenation (HDO) (R-104) - Machinery           | 9.20E-03                   | 9.20E-03                      | 1.46E-02                   |
| Stage 4.1.1: Cooling, heat exchanger E-105 (S-20 out) - machinery - ES      | 8.77E-04                   | 8.77E-04                      | 1.34E-03                   |
| Stage 4.1.4: Heat exchanger E-106 - machinery                               | 6.74E-04                   | 6.74E-04                      | 1.03E-03                   |
| Stage 4.1.2: Compressor pump P-101 - energy requirements - ES               | 3.39E-04                   | 3.39E-04                      | 5.38E-04                   |
| Stage 4.1.1: Cooling water S18                                              | 2.05E-04                   | 2.05E-04                      | 2.89E-04                   |
| Stage 4.1.5. Flash separation (V-102) - machinery                           | 1.52E-04                   | 1.52E-04                      | 2.42E-04                   |
| Stage 4.1.2: Compressor pump P-101, machinery                               | 1.06E-04                   | 1.06E-04                      | 1.62E-04                   |

|                                                                                           |          |           |          |
|-------------------------------------------------------------------------------------------|----------|-----------|----------|
| Stage 4.1.4: Cooling bioliquid (S22/S23), heat exchanger E-106 - energy requirements - ES | 0.00E+00 | 0.00E+00  | 0.00E+00 |
| Stage 1: Feedstock Production and transport                                               | 6.90E-01 | -7.44E-01 | 0.00E+00 |
| flexby Overall maintainence and replacement                                               | 2.20E-02 | 2.20E-02  | 3.56E-02 |
| Stage 2: Drying and deodourization of feedstock - ES                                      | 0.00E+00 | 0.00E+00  | 0.00E+00 |
| flexby SOFC - gas phase from the bioliquid                                                | 2.50E-02 | 2.50E-02  | 6.37E-02 |

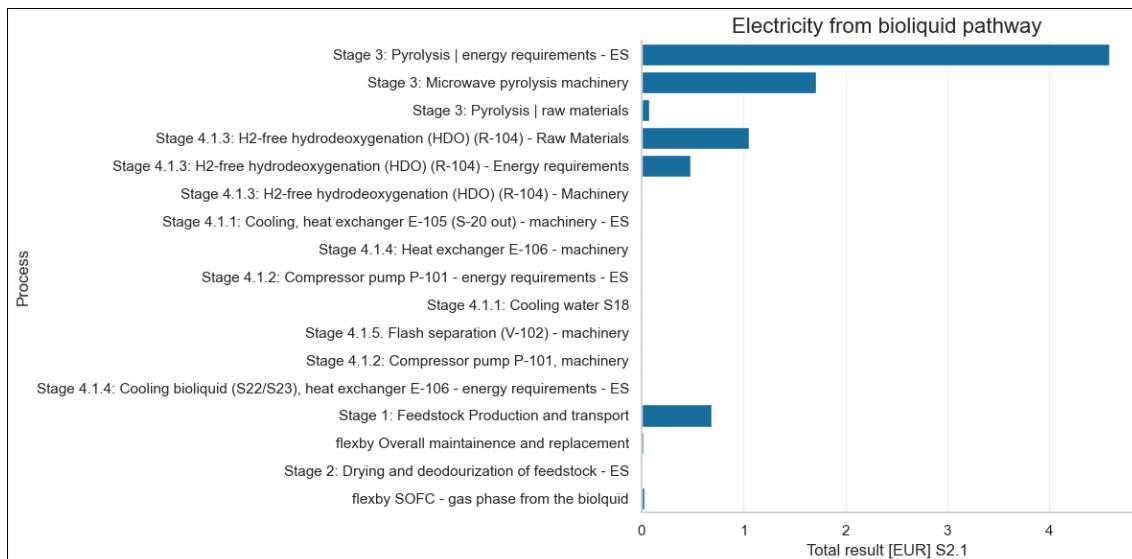



Figure 8 - Detail of scenario 2.1 of electricity from bioliquid pathway

**Feedstock production** contributes differently depending on the scenario. In the microalgae scenario with system-expansion credit (**S2.1-SE**), feedstock production is effectively a net cost reduction, as the value of wastewater treatment offsets upstream costs. In the dairy sludge scenario (**S5.1**), feedstock production is already zero, since the sludge is a free residual stream. Despite these differences, the remaining costs

(mainly from pyrolysis and HDO) are of comparable magnitude, highlighting that the conversion and upgrading stages dominate the LCC regardless of feedstock type.

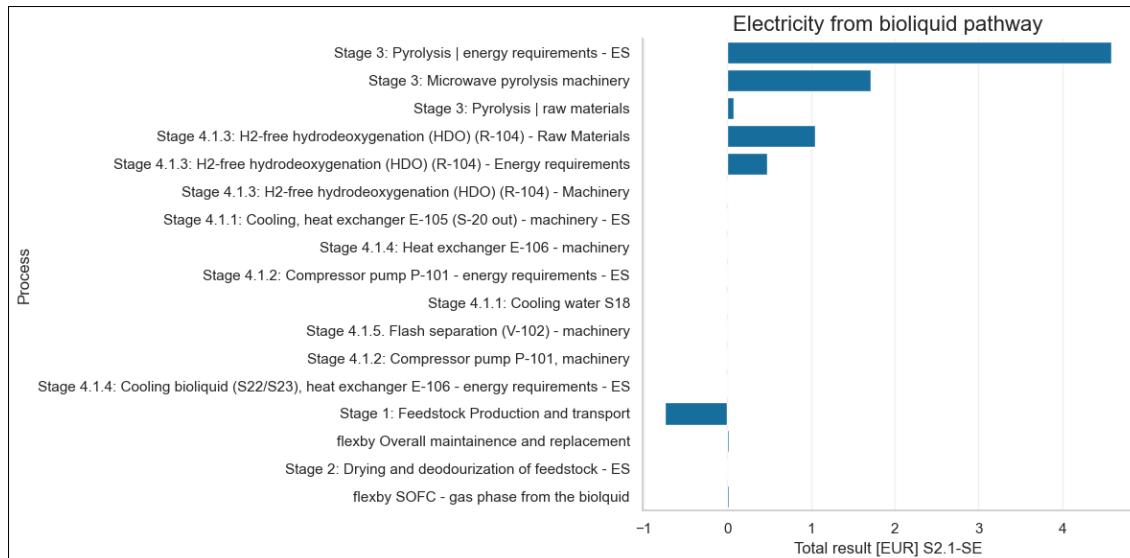



Figure 9 - Detail of scenario 2.1-SE of electricity from bioliquid pathway

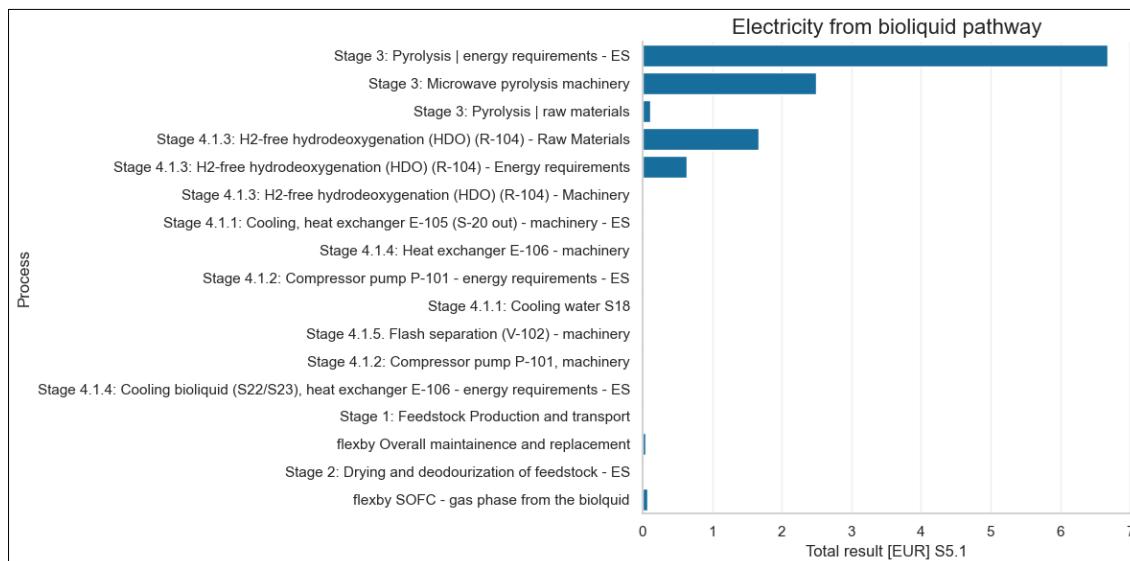



Figure 10 - Detail of scenario 5.1 of electricity from bioliquid pathway

#### 6.4.1.3 Electricity from the gas fraction pathway

The LCC of electricity production from the gaseous fraction of the bioliquid pathway is dominated by the **pyrolysis stage**, with **energy demand** and **microwave pyrolysis machinery** forming the main contributors.

The **upgrading of gas fraction** (including separation, steam reforming, and associated heat exchangers) is the next largest cost contribution. Among these, gas fraction separation and steam reforming represent the bulk of the cost. Cooling and compression operations contribute only minor fractions to the total cost.

The **SOFC** cell for the electricity production itself adds a small but noticeable cost, reflecting the operational requirements to convert the hydrogen-rich gas fraction into electricity. Maintenance and auxiliary equipment costs remain negligible in comparison to pyrolysis and upgrading.

*Table 10 - LCC results for the electricity production from the pyro-gas pathway of the pyrolysis*

| Process                                                                            | Total result<br>[EUR] S2.1 | Total result<br>[EUR] S2.1-SE | Total result<br>[EUR] S5.1 |
|------------------------------------------------------------------------------------|----------------------------|-------------------------------|----------------------------|
| Stage 3: Pyrolysis   energy requirements - ES                                      | 3.58E+00                   | 3.58E+00                      | 6.45E+00                   |
| Stage 3: Microwave pyrolysis machinery                                             | 1.34E+00                   | 1.34E+00                      | 2.41E+00                   |
| Stage 3: Pyrolysis   raw materials                                                 | 5.61E-02                   | 5.61E-02                      | 1.01E-01                   |
| Stage 1: Feedstock Production and transport                                        | 5.88E-01                   | -6.35E-01                     | 0.00E+00                   |
| Stage 4.3.3. Separation of pyrogas (V-101)                                         | 2.24E-01                   | 2.24E-01                      | 1.23E+00                   |
| Stage 4.3.6: Steam reforming (R-101)                                               | 1.98E-01                   | 1.98E-01                      | 5.02E-01                   |
| Stage 4.3.5: heat exchanger E-102, energy requirements - ES                        | 4.34E-02                   | 4.34E-02                      | 1.59E-01                   |
| Stage 4.3.12: SOFC electricity production from hydrogen rich pyrogas fraction - ES | 3.32E-02                   | 3.32E-02                      | 5.97E-02                   |
| Stage 4.3.4: Compression pyrogas. K-101, S7                                        | 6.93E-03                   | 6.93E-03                      | 1.13E-02                   |
| Stage 4.3.2: Heat exchanger E-101, machinery                                       | 3.05E-03                   | 3.05E-03                      | 5.49E-03                   |
| Stage 4.3.2. Cooling pyrogas S3, heat exchanger E-101 - ES                         | 2.26E-03                   | 2.26E-03                      | 1.10E-02                   |

|                                                                  |          |          |          |
|------------------------------------------------------------------|----------|----------|----------|
| Stage 4.3.1: Cooling pyrogas with tap water (S2 - S3) - ES       | 2.26E-03 | 2.26E-03 | 1.10E-02 |
| flexby machinery heat exchanger E-102 (copy)                     | 9.50E-04 | 9.50E-04 | 1.64E-03 |
| Stage 4.3.7: cooling reformed gas S11, heat exchanger E-103 - ES | 7.14E-04 | 7.14E-04 | 1.23E-03 |
| Stage 4.3.9. cooling WGS gas product, heat exchanger E-104 - ES  | 4.79E-04 | 4.79E-04 | 8.26E-04 |
| flexby Overall maintainence and replacement                      | 1.87E-02 | 1.87E-02 | 3.37E-02 |
| Stage 2: Drying and deodourization of feedstock - ES             | 0.00E+00 | 0.00E+00 | 0.00E+00 |

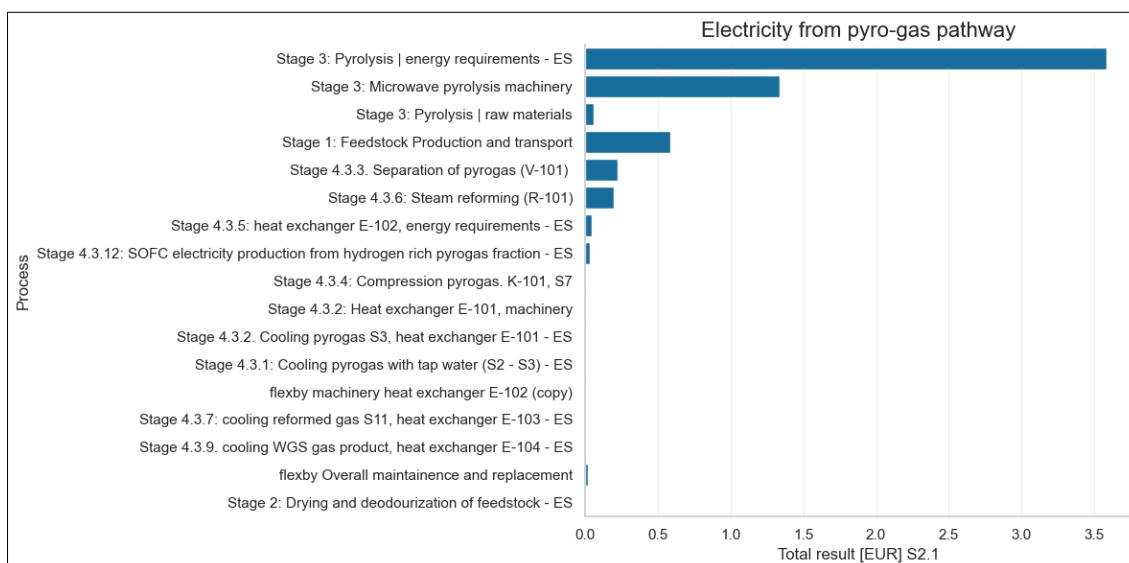



Figure 11 - Detail of scenario 2.1 of electricity from pyro-gas pathway

Across scenarios, feedstock reductions (system-expansion for microalgae in **S2.1-SE** or free dairy-based oily-sludge in **S5.1**) decrease upstream costs, but the remaining LCC is largely driven by pyrolysis and gas upgrading, highlighting these as the economic hotspots for electricity production via the gas fraction pathway as they were via the bioliquid pathway.

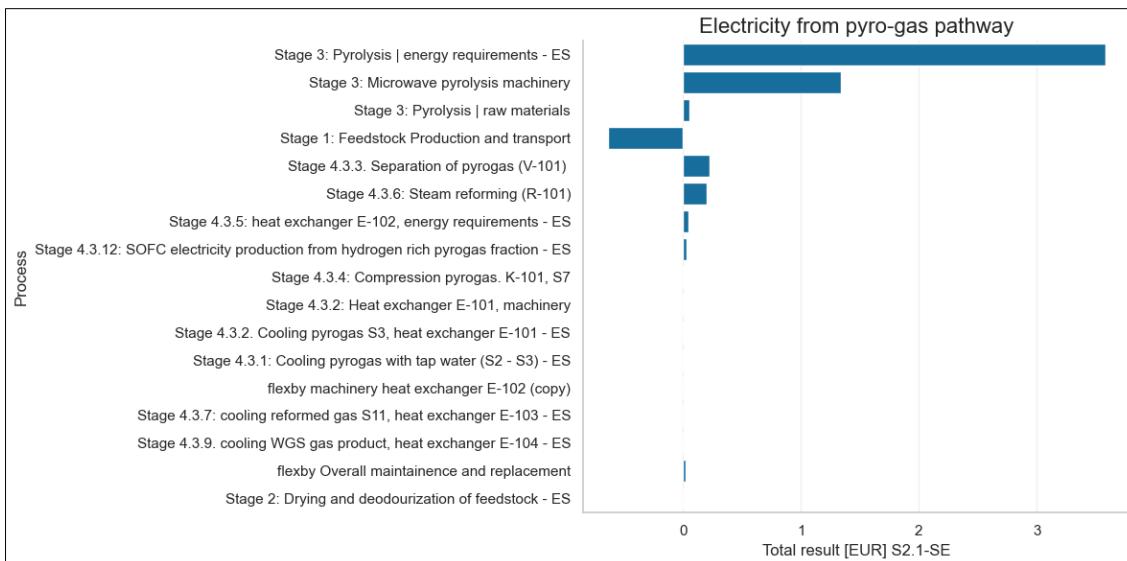



Figure 12 - Detail of scenario 2.1-SE of electricity from pyro-gas pathway

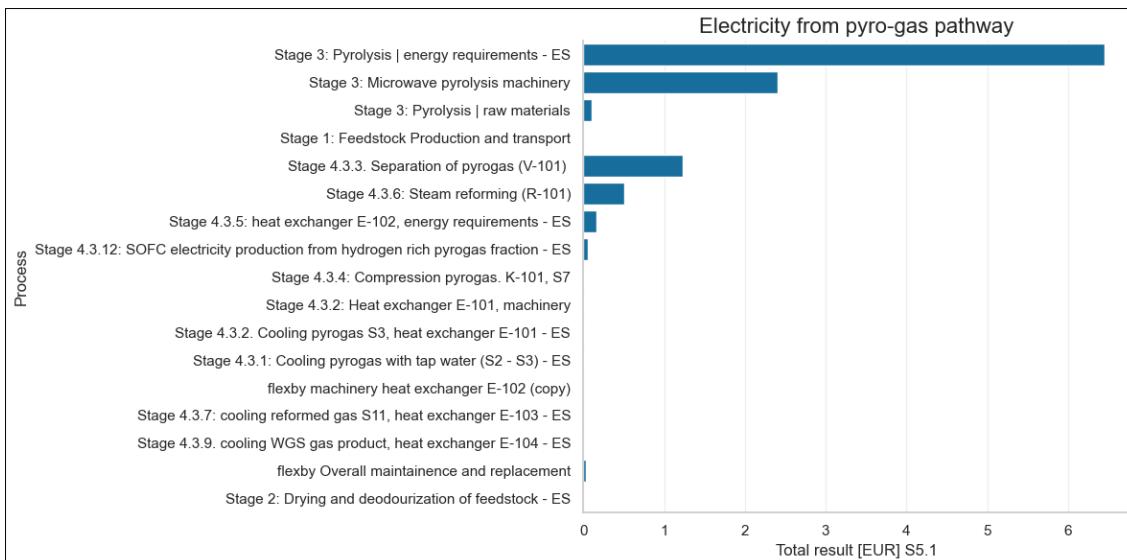



Figure 13 - Detail of scenario 5.1 of electricity from pyro-gas pathway

#### 6.4.2 Biochar pathway

The life LCC for the biochar pathway is again dominated by the **pyrolysis** stage (also because no upgrading is considered yet) which accounts for nearly all operational expenses across scenarios. **Energy requirements** for pyrolysis form the largest single cost share, followed by the capital cost of the **microwave pyrolysis unit**. Raw material inputs for pyrolysis contribute only marginally.

Table 11 - LCC results for the electricity production from the biochar pathway of the pyrolysis

| Process                                              | Total result<br>[EUR] S2.1 | Total result<br>[EUR] S2.1-SE | Total result<br>[EUR] S5.1 |
|------------------------------------------------------|----------------------------|-------------------------------|----------------------------|
| Stage 3: Pyrolysis   energy requirements - ES        | 3.85E+00                   | 3.85E+00                      | 7.31E+00                   |
| Stage 3: Microwave pyrolysis machinery               | 1.44E+00                   | 1.44E+00                      | 2.73E+00                   |
| Stage 3: Pyrolysis   raw materials                   | 6.03E-02                   | 6.03E-02                      | 1.14E-01                   |
| Stage 1: Feedstock Production and transport          | 6.89E-01                   | -7.43E-01                     | 0.00E+00                   |
| flexby Overall maintainence and replacement          | 2.19E-02                   | 2.19E-02                      | 4.05E-02                   |
| Stage 2: Drying and deodourization of feedstock - ES | 0.00E+00                   | 0.00E+00                      | 0.00E+00                   |

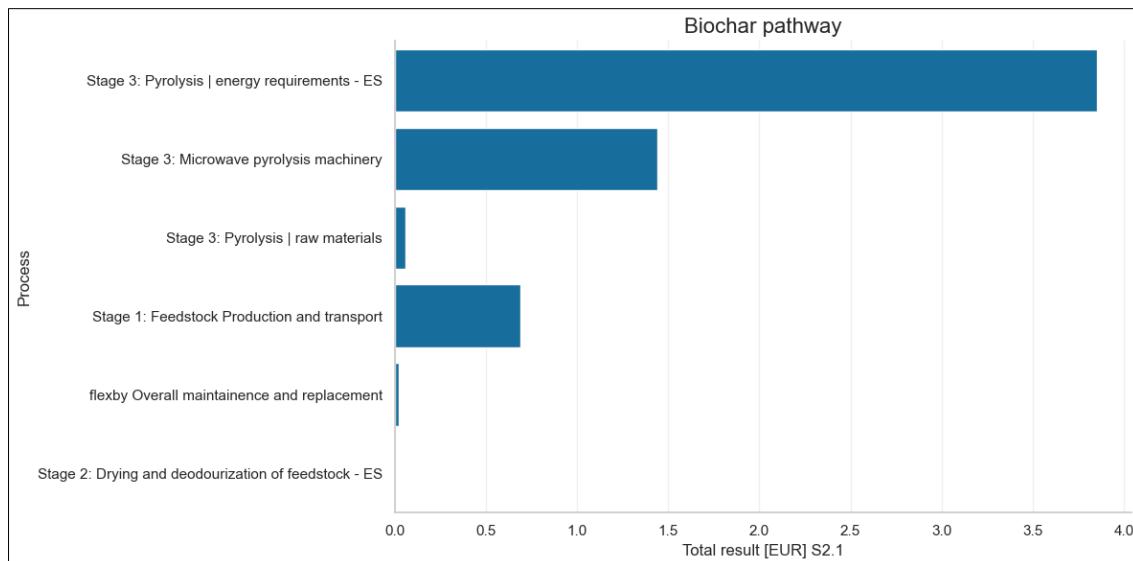



Figure 14 - Detail of scenario 2.1 of biochar pathway

Upstream **feedstock production** remains relevant in the base microalgae scenario (**S2.1**), but in the system-expansion case (**S2.1-SE**) these costs become a net credit due to the integration of wastewater treatment. In the dairy sludge scenario (**S5.1**), feedstock costs are simply eliminated, as the sludge is a free residual stream.

Aside from pyrolysis, all other cost categories (including maintenance) represent negligible contributions (<1%) to the total LCC.

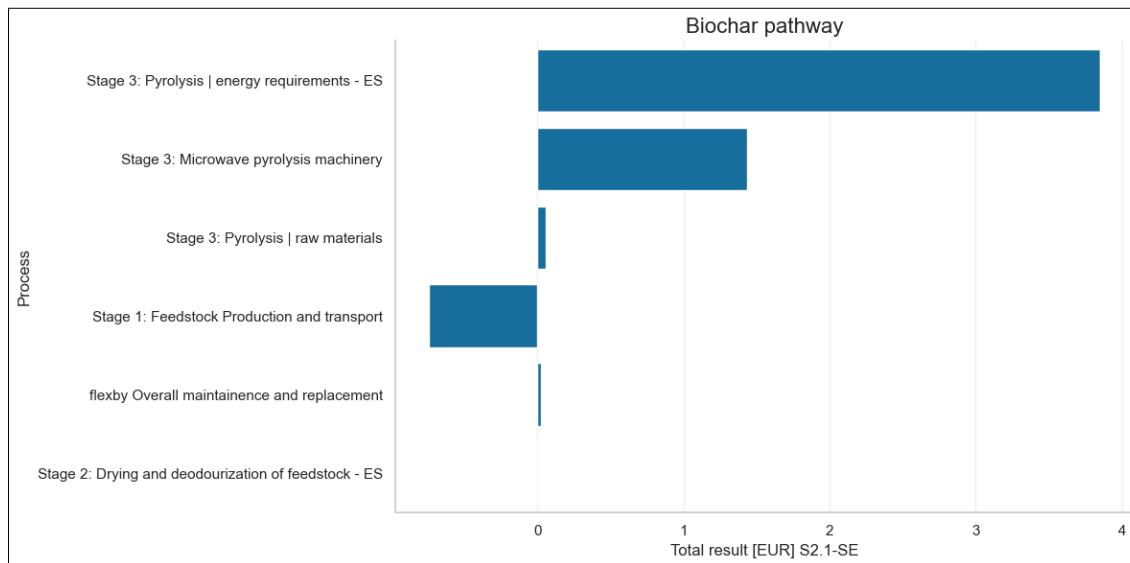



Figure 15 - Detail of scenario 2.1-SE of biochar pathway

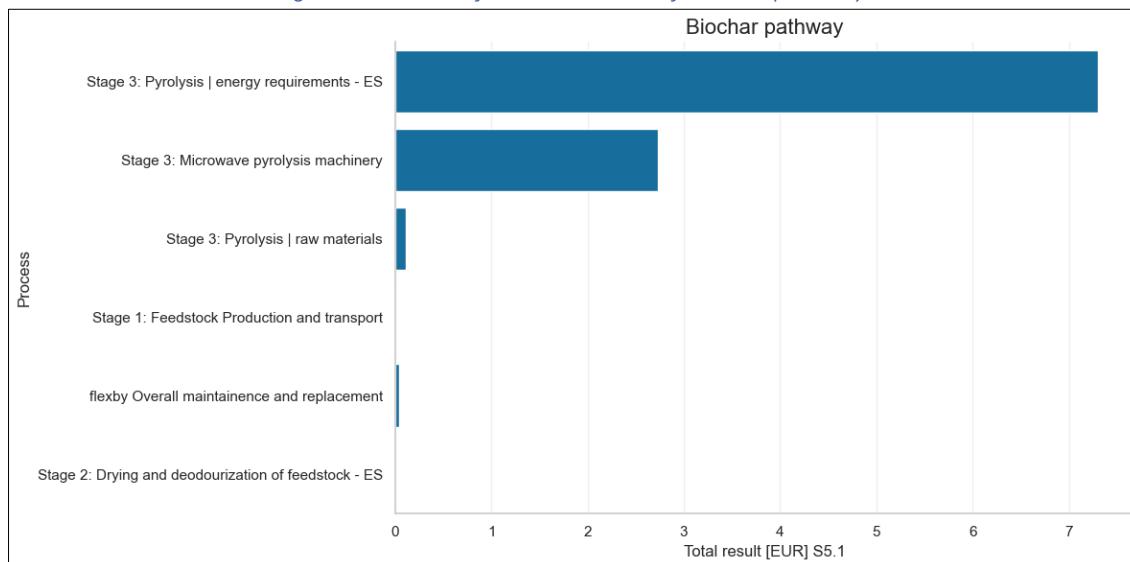



Figure 16 - Detail of scenario 5.1 of biochar pathway

## 7 Social Life Cycle Assessment

Social Life Cycle Assessment (S-LCA) is a methodological framework for evaluating the social impacts associated with products and services across their entire life cycle, from raw material extraction through energy and material production, use, and end-of-life management (Benoît Norris et al., 2020).

The first formal S-LCA guidelines were published in 2009 by the UNEP/SETAC Life Cycle Initiative (UNEP, 2009), providing an initial structure for defining social indicators, stakeholder groups, and assessment procedures. These guidelines were updated in 2020 (Benoît Norris et al., 2020) to incorporate methodological advances, clarify impact pathways, and strengthen alignment with other life cycle approaches. Building on both editions, the ISO 14075:2024 standard establishes a harmonised set of principles and a high-level framework for conducting S-LCA. It does not prescribe specific methods but provides a foundation intended to support consistency, comparability, and integration with the broader ISO 14040/44 life cycle assessment standards. The Reference scale assessment (type 1 approach in the UNEP 2020 guidelines), which leads to a social performance evaluation, was followed in this study.

### 7.1 Goal and scope of the Social Life Cycle Assessment

#### 7.2.1. Goal of the study

The intended application of this study is to perform a hotspot analysis of the FLEXBY product system as defined in section 5.1.3 and identify social hotspots based on primary data available for the environmental LCA and LCC combined with generic data from social LCA databases, that can drive further data collection and preventative measures targeting potential social impacts as the project proceeds to higher TRLs.

#### 7.1.1 Functional Unit

S-LCA is a relative approach that is structured around a functional unit. This functional unit quantifies the function of the product system under study. The functional unit was chosen to be the same as in the LCC. The FLEXBY system produces different products: biofuel, electricity from gas fraction, bio-hydrogen and biochar. The biofuel is chosen as the primary product and the remaining were modelled as by-products.

All subsequent analyses are relative to the functional unit of 1 kg of biofuel, as all inputs and outputs in the S-LCI and consequently the S-LCIA are scaled to the functional unit. The results are also represented from the perspective of the by-products.

### 7.1.2 Multifunctionality

The handling of multifunctionality was the same as established in section 5.1.9. In S-LCA, allocation distributes the social impacts across different products or functions when a process produces multiple outputs, and the partitioning concerns social indicators. The choice of allocation method can influence how social burdens or benefits are attributed within a product system.

### 7.1.3 Stakeholders

The study is a hotspot analysis of social impacts along the life cycle of the FLEXBY system. Initially all stakeholders as included in the background database of SOCA v4 were considered: society, local community, workers, value chain actors, consumers and children.

### 7.1.4 Activity variable

In Social LCA, activity variables are used to express the scale or relevance of social impacts associated with a process in a product system. As described by Norris (2006), they represent a measure of process activity or scale that can be linked to output. According to UNEP (2020, p. 63), an activity variable is defined as 'A measure of process activity or scale which can be related to process output' thereby allowing social indicators to be quantified in relation to a product's life cycle. The most commonly used activity variable in PSILCA and therefore SOCA, is worker hours, that is, the number of hours worked to produce a specific output in a given process or sector. This measure is well-suited for indicators related to the stakeholder group workers, as it directly reflects the scale of Labour involvement in production.

The calculation follows this basic formula:

$$\text{Worker hours} = \frac{\text{Unit labour costs}}{\text{Mean hourly labour cost (per employee)}}$$

### Equation 1

This equation expresses the labour time embedded per unit of output as the ratio of labour compensation per unit of output (**unit labour cost**) to the average hourly cost of labour.

#### Step 1: Calculating Unit Labour Cost

Unit labour cost is defined as:

$$\text{Unit labour costs} = \frac{\text{Compensation of employees (in USD per country – specific sector and year)}}{\text{Gross output (in USD per country – sector and year)}}$$

According to the Eora developers (Lenzen et al., 2015), this variable adheres to the United Nations System of National Accounts (UN SNA) definitions (UN et al., 2009), which define compensation as '*compensation of employees is defined as the total remuneration, in cash or in kind, payable by an enterprise to an employee in return for work done by the latter during the accounting period.*'

#### 7.1.5 System boundaries

The system boundaries follow those established for the LCC in section 5.1.5.

#### 7.1.6 Assumptions

Given the early stage of development of the FLEXBY process, the preliminary S-LCA relies on a combination of primary data, partner-provided estimates, process simulations, and literature values. Whenever direct cost data or detailed operational information were not available, assumptions were formulated based on analogous technologies and expert judgment from involved partners. Social data was taken from the SOCA v4 database and at times from the PSILCA v4 database and adapted to the SOCA v4 structure based on the database build approach. All assumptions are documented in detail within the process-specific inventory tables of the LCI section.

A simplified operational lifetime of 20 years is assumed for the integrated demonstrator, serving as the basis for annualising capital expenditures. This approach ensures methodological alignment with the early-stage LCA and provides a coherent foundation for cost modelling. At this stage, FLEXBY technologies are broadly positioned at TRL 2-3-4.

### 7.1.7 Social Indicators and Social Life Cycle Impact Assessment Method

The study uses the impact assessment method 'Social Impacts weighting method' available in SOCA v4. The impact categories provided in the PSILCA v4.0 database are disaggregated, and each category represents the social indicators provided in the database. Table 13 provides an overview of the social indicators (each indicator is also represented by a standalone impact category), their corresponding stakeholder and subcategory, and they are all measured in medium risk hours with abbreviations representing the indicator, for example 'Evidence of violations of laws and employment regulations' has the abbreviation 'EV' associated with the medium risk hour value. The indicator data were either collected on a country level or sectoral level. Each impact category translated the risk levels of social indicators across the database into medium risk hours with characterisation factors as shown in Table 12. The results for each impact category are a product of the worker hours of the process, the scaling factors based on the quantities used, and cost conversion factors, as well as the characterisation factors of the respective impact category, as shown in the formula below:

$$\begin{aligned}
 & \text{social indicator impacts (medium risk hours)} \\
 &= \sum_{\text{social indicator}}^w \text{worker hours} \times \text{scaling factor of processes} \times \text{characterisation factor}
 \end{aligned}$$

Table 12: Characterisation factors in the PSILCA database

| Risk/opportunity level | Characterisation Factor |
|------------------------|-------------------------|
| Very low risk          | 0.01                    |
| Low risk               | 0.1                     |
| Medium risk            | 1                       |
| High risk              | 10                      |
| Very high risk         | 100                     |
| No risk/ opportunity   | 0                       |
| Low opportunity        | 0.1                     |
| Medium opportunity     | 1                       |
| High opportunity       | 10                      |

Table 13: Impact categories covering the social indicators in PSILCA v4.0

| ID  | Name                                                      | Stakeholder | Subcategory                                      | Unit              | Indicator level |
|-----|-----------------------------------------------------------|-------------|--------------------------------------------------|-------------------|-----------------|
| I1  | Children in employment, female                            | Workers     | Child labour                                     | CE med risk hours | Sector          |
| I2  | Children in employment, male                              | Workers     | Child labour                                     | CE med risk hours | Sector          |
| I3  | Children in employment, total                             | Workers     | Child labour                                     | CE med risk hours | Sector          |
| I4  | Evidence of violations of laws and employment regulations | Workers     | Social benefits, legal issues                    | EV med risk hours | Sector          |
| I5  | Freedom of association and collective bargaining          | Workers     | Freedom of association and collective bargaining | FA med risk hours | Country         |
| I6  | Frequency of forced labour                                | Workers     | Forced labour                                    | FL med risk hours | Country         |
| I7  | Gender wage gap                                           | Workers     | Discrimination                                   | GW med risk hours | Sector          |
| I8  | Goods produced by forced labour                           | Workers     | Forced labour                                    | GF med risk hours | Sector          |
| I9  | Living wage, per month                                    | Workers     | Fair salary                                      | LW med risk hours | Country         |
| I10 | Men in the sectoral labour force                          | Workers     | Discrimination                                   | M med risk hours  | Sector          |
| I11 | Minimum wage, per month                                   | Workers     | Fair salary                                      | MW med risk hours | Country         |
| I12 | number of strikes                                         | Workers     | Freedom of association and collective bargaining | NS med risk hours | Sector          |
| I13 | Paid maternity leave                                      | Workers     | Social benefits, legal issues                    | PM med risk hours | Country         |

|     |                                                                                            |                    |                                                  |                   |         |
|-----|--------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------|-------------------|---------|
| I14 | Presence of sufficient safety measures                                                     | Workers            | Health and safety                                | SS med risk hours | Sector  |
| I15 | Rate of fatal accidents at workplace                                                       | Workers            | Health and safety                                | FA med risk hours | Sector  |
| I16 | Rate of non-fatal accidents at workplace                                                   | Workers            | Health and safety                                | NA med risk hours | Sector  |
| I17 | Sector average wage, per month                                                             | Workers            | Fair salary                                      | SA med risk hours | Sector  |
| I18 | Trade union density                                                                        | Workers            | Freedom of association and collective bargaining | TU med risk hours | Country |
| I19 | Trafficking in persons                                                                     | Workers            | Forced labour                                    | TP med risk hours | Country |
| I20 | Violations of mandatory health and safety standards                                        | Workers            | Health and safety                                | VS med risk hours | Country |
| I21 | Weekly hours of work per employee female                                                   | Workers            | Working time                                     | WH med risk hours | Sector  |
| I22 | Weekly hours of work per employee male                                                     | Workers            | Working time                                     | WH med risk hours | Sector  |
| I23 | Women in the sectoral labour force                                                         | Workers            | Discrimination                                   | W med risk hours  | Sector  |
| I24 | Active involvement of enterprises in corruption and bribery                                | Value Chain Actors | Corruption                                       | AC med risk hours | Sector  |
| I25 | Presence of anti-competitive behaviour or violation of anti-trust and monopoly legislation | Value Chain Actors | Fair competition                                 | AC med risk hours | Sector  |
| I26 | Public sector corruption                                                                   | Value Chain Actors | Corruption                                       | PC med risk hours | Country |
| I27 | Social responsibility along the supply chain                                               | Value Chain Actors | Promoting social responsibility                  | SS med risk hours | Sector  |

|     |                                                |         |                                      |                    |         |
|-----|------------------------------------------------|---------|--------------------------------------|--------------------|---------|
| I28 | Access to electricity                          | Society | Technology development               | AE med risk hours  | Country |
| I29 | Access to internet                             | Society | Technology development               | AI med risk hours  | Country |
| I30 | Animal protection                              | Society | Ethical treatment of animals         | AN med risk hours  | Country |
| I31 | Asylum seekers rate                            | Society | Migration                            | AS med risk hours  | Country |
| I32 | Biodiversity & Habitat                         | Society | Nature                               | BH med risk hours  | Country |
| I33 | Contribution to economic development           | Society | Contribution to economic development | CD med risk hours  | Sector  |
| I34 | Ecosystem services                             | Society | Nature                               | EC med risk hours  | Country |
| I35 | Embodied value added total                     | Society | Contribution to economic development | EV med risk hours  | Sector  |
| I36 | Emigration rate                                | Society | Migration                            | EM med risk hours  | Country |
| I37 | Female genital mutilation 15-49                | Society | Gender equality and empowerment      | FGM med risk hours | Country |
| I38 | Female with account at a financial institution | Society | Gender equality and empowerment      | FF med risk hours  | Country |
| I39 | Food insecurity                                | Society | Poverty Alleviation                  | FI med risk hours  | Country |
| I40 | Freedom of the press                           | Society | Censorship and Oppression            | FP med risk hours  | Country |
| I41 | Gender inequalities                            | Society | Gender equality and empowerment      | GI med risk hours  | Country |

|     |                                                    |         |                                        |                   |         |
|-----|----------------------------------------------------|---------|----------------------------------------|-------------------|---------|
| I42 | Global freedom scores                              | Society | Access to immaterial resources         | GF med risk hours | Country |
| I43 | Global Peace Index                                 | Society | Secure living condition                | GP med risk hours | Country |
| I44 | Global Terrorism Index                             | Society | Secure living conditions               | GT med risk hours | Country |
| I45 | Health expenditure, domestic general government    | Society | Health and safety                      | HE med risk hours | Country |
| I46 | Health expenditure, external resources             | Society | Health and safety                      | HE med risk hours | Country |
| I47 | Health expenditure, out-of-pocket                  | Society | Health and safety                      | HE med risk hours | Country |
| I48 | Health expenditure, total                          | Society | Health and safety                      | HE med risk hours | Country |
| I49 | Household air pollution attributable DALYs, female | Society | Health and safety                      | HA med risk hours | Country |
| I50 | Household air pollution attributable DALYs, male   | Society | Health and safety                      | HA med risk hours | Country |
| I51 | Illiteracy rate, female                            | Society | Education and upskilling opportunities | I med risk hours  | Country |
| I52 | Illiteracy rate, male                              | Society | Education and upskilling opportunities | I med risk hours  | Country |
| I53 | Illiteracy rate, total                             | Society | Education and upskilling opportunities | I med risk hours  | Country |
| I54 | Immigration rate                                   | Society | Migration                              | IM med risk hours | Country |

|     |                                             |         |                                        |                   |         |
|-----|---------------------------------------------|---------|----------------------------------------|-------------------|---------|
| I55 | Informal employment, female                 | Society | Contribution to economic development   | IE med risk hours | Sector  |
| I56 | Informal employment, male                   | Society | Contribution to economic development   | IE med risk hours | Sector  |
| I57 | Informal employment, total                  | Society | Contribution to economic development   | IE med risk hours | Sector  |
| I58 | International Migrant Stock                 | Society | Migration                              | IS med risk hours | Country |
| I59 | International migrant workers in the sector | Society | Migration                              | IW med risk hours | Sector  |
| I60 | Internet freedom scores                     | Society | Censorship and Oppression              | IF med risk hours | Country |
| I61 | Labour productivity                         | Society | Contribution to economic development   | LP med risk hours | Country |
| I62 | Life expectancy at birth                    | Society | Health and safety                      | LE med risk hours | Country |
| I63 | Net migration rate                          | Society | Migration                              | NM med risk hours | Country |
| I64 | Number of threatened species                | Society | Nature                                 | NT med risk hours | Sector  |
| I65 | Political stability and absence of violence | Society | Governance                             | PS med risk hours | Country |
| I66 | Pollution level of the country              | Society | Safe and healthy living conditions     | PL med risk hours | Country |
| I67 | Population below national poverty line      | Society | Poverty alleviation                    | PP med risk hours | Country |
| I68 | Public expenditure on education             | Society | Education and upskilling opportunities | PE med risk hours | Country |

|     |                                            |                 |                                        |                   |         |
|-----|--------------------------------------------|-----------------|----------------------------------------|-------------------|---------|
| I69 | R&D expenditures                           | Society         | Technology development                 | RD med risk hours | Country |
| I70 | Rate of researchers                        | Society         | Technology development                 | RR med risk hours | Country |
| I71 | Safe access to Drinking water coverage     | Society         | Poverty Alleviation                    | DW med risk hours | Country |
| I72 | Sanitation coverage                        | Society         | Poverty Alleviation                    | SC med risk hours | Country |
| I73 | Social Protection Expenditures             | Society         | Secure living conditions               | SR med risk hours | Country |
| I74 | State of democracy                         | Society         | Governance                             | SD med risk hours | Country |
| I75 | Unemployment rate in the country           | Society         | Local employment                       | UR med risk hours | Country |
| I76 | Youth illiteracy rate, female              | Society         | Education and upskilling opportunities | YI med risk hours | Country |
| I77 | Youth illiteracy rate, male                | Society         | Education and upskilling opportunities | YI med risk hours | Country |
| I78 | Youth illiteracy rate, total               | Society         | Education and upskilling opportunities | YI med risk hours | Country |
| I79 | Youth unemployment                         | Society         | Education and upskilling opportunities | YU med risk hours | Country |
| I80 | Certified environmental management systems | Local Community | Access to material resources           | CE med risk hours | Sector  |
| I81 | Embodied agricultural area footprint       | Local Community | Environmental footprints               | EA med risk hours | Sector  |
| I82 | Embodied CO2 footprint                     | Local Community | GHG footprints                         | EC med risk hours | Sector  |
| I83 | Embodied CO2-eq footprint                  | Local Community | Environmental footprints               | EC med risk hours | Sector  |

| I84 | Embodied forest area footprint                                       | Local Community | Environmental footprints     | EF med risk hours | Sector  |
|-----|----------------------------------------------------------------------|-----------------|------------------------------|-------------------|---------|
| I85 | Embodied water footprint                                             | Local Community | Environmental footprints     | EW med risk hours | Sector  |
| I86 | Extraction of biomass (related to area)                              | Local Community | Access to material resources | EB med risk hours | Country |
| I87 | Extraction of biomass (related to population)                        | Local Community | Access to material resources | EB med risk hours | Country |
| I88 | Extraction of fossil fuels                                           | Local Community | Access to material resources | EF med risk hours | Country |
| I89 | Extraction of industrial and construction minerals                   | Local Community | Access to material resources | EI med risk hours | Country |
| I90 | Extraction of ores                                                   | Local Community | Access to material resources | EO med risk hours | Country |
| I91 | Homicides                                                            | Local Community | Secure living condition      | HO med risk hours | Country |
| I92 | Indigenous People Rights Protection Index                            | Local Community | Respect of indigenous rights | IP med risk hours | Country |
| I93 | Internally displaced people                                          | Local Community | Secure living condition      | ID med risk hours | Country |
| I94 | Level of industrial water use (related to renewable water resources) | Local Community | Access to material resources | IW med risk hours | Country |
| I95 | Level of industrial water use (related to total withdrawal)          | Local Community | Access to material resources | IW med risk hours | Country |
| I96 | Presence of indigenous population                                    | Local Community | Respect of indigenous rights | PI med risk hours | Country |
| I97 | Waste management                                                     | Local Community | Access to material resources | WM med risk hours | Country |
| I98 | Data protection and privacy                                          | Consumer        | Consumer protection          | DP med risk hours | Country |
| I99 | Online Consumer Protection Legislation                               | Consumer        | Consumer protection          | OC med risk hours | Country |

|             |                                 |          |                   |                    |         |
|-------------|---------------------------------|----------|-------------------|--------------------|---------|
| <b>I100</b> | Child marriage, female          | Children | Children welfare  | CM med risk hours  | Country |
| <b>I101</b> | Child marriage, male            | Children | Children welfare  | CM med risk hours  | Country |
| <b>I102</b> | Female genital mutilation 0-14  | Children | Children welfare  | FGM med risk hours | Country |
| <b>I103</b> | Mean years of schooling, female | Children | Education         | S med risk hours   | Country |
| <b>I104</b> | Mean years of schooling, male   | Children | Education         | S med risk hours   | Country |
| <b>I105</b> | Mean years of schooling, total  | Children | Education         | S med risk hours   | Country |
| <b>I106</b> | Under-five mortality rate       | Children | Health and Safety | UM med risk hours  | Country |

### 7.1.8 Process-specific life cycle inventory

The product system for the S-LCA follows the same quantitative process-based model approach used in the environmental LCA and LCC, reflecting the processes that define the cradle-gate stages of the FLEXBY technology and including all the flows normalised to the functional unit. All processes in the foreground system are consistently identified using the naming conventions established during the LCA modelling phase. The additional data for the social LCA study concerns the activity variables (worker hours) and the social flows or indicators associated with the processes.

The SOCA v4 database was used as a background database for this case study. The SOCA v4 database used includes the ecoinvent 3.12 database with cut-off unit processes with social data added on from PSILCA 4.0. The SOCA database is built on ecoinvent's process-based database structure. Whereas the PSILCA database is an input-output LCA database. Process-based LCA databases are structured by scientifically analysing the physical process and building the datasets bottom up (i.e. mass/material balance, scientific characteristics, etc.). Input-output databases use historical data of economic transactions to trace along a given supply chain. The process-based databases have more specific datasets, but less complete coverage, whereas input-output databases have lesser specificity but higher global coverage.

The PSILCA database has cost data from the year 2015, and applies the USD 2015, the SOCA v4.0 database has cost values updated to EUR2025 with economic conversion factors. Modelling was performed by performing necessary conversions when working with data from PSILCA.

The social data was added to the most intensive foreground unit processes and a literature review was conducted to identify social issues that occur and are to be included in the S-LCA study. Data collection conducted for the eLCA and LCC was applied to the S-LCA models as well. Missing data was taken from secondary sources such as the PSILCA and SOCA databases. The following sections detail the social indicator data added to the FLEXBY unit processes.

### 7.1.8.1 Stage 1: Feedstock production

#### Feedstock 2

The equipment was modelled initially using the equipment inventory provided by **A4F** for the current FLEXBY demonstrator scale. At this stage of development, costs are based on partner-supplied estimates for all major units and taken from the LCC. The worker hours were estimated using data from PSILCA v4 and scaling them to the process specific data. The background datasets used are specified in Table 14.

*Table 14: PSILCA processes corresponding to Cultivation and harvesting of feedstock*

| Process/equipment             | PSILCA process                                                     | Worker hour/USD |
|-------------------------------|--------------------------------------------------------------------|-----------------|
| Raceway pond with paddlewheel | Machinery and equipment n.e.c.                                     | 3.81E-02        |
| Harvesting pump               | Machinery and equipment n.e.c.                                     | 3.81E-02        |
| Settler for harvesting        | Machinery and equipment n.e.c.                                     | 3.81E-02        |
| Municipal Wastewater          | Sewage and refuse disposal, sanitation and similar activities - PT | 3.37E-02        |
| Electricity                   | Electrical energy, gas, steam and hot water                        | 1.57E-02        |
| Salts                         | Chemicals, chemical products and man-made fibres                   | 3.37E-02        |
| Cultivation process           | Sewage and refuse disposal, sanitation and similar activities – PT | 3.37E-02        |
| Harvesting process            | Products of agriculture, hunting and related services              | 3.37E-02        |

At this stage the model considers scenarios for the microalgae cultivation without wastewater treatment as well as with partial wastewater treatment and not complete treatment, because at this point the algae are cultivated for FLEXBY and the water quality is only assessed for N, P and C content. However, the project also aims to test the provision of the service for urban wastewater treatment and use the microalgae resulting from it, considered as a waste residue in the classification of biofuels feedstocks.

**A4F** identified the species of microalgae grown in the wastewater as two predominant species of the *Scenedesmus* genus, which has already been studies for biofuel applications because its significant lipid content and growth rate (Deliverable 2.2) a consistent proportion is possibly of the *Desmodesmus* subgenus.

### **Feedstock 5**

Feedstock 5, dairy sludge, was treated as a burden free input.

#### **7.1.8.2 Stage 2: Feedstock drying and deodorisation and Stage 3: Pyrolysis**

Both processes of feedstock drying and pyrolysis rely on machinery supplied by **FRIMA** and will be operated and tested at **CSIC**.

**FRIMA** has provided preliminary cost estimates for the complete microwave (MW) pyrolysis unit, including the microwave cavity, control panel and auxiliary components. The material composition of the microwave pyrolysis. These capital costs have been incorporated directly into the model and annualised according to the standard 20-year economic lifetime used throughout the assessment. The replacement has been modelled with the social data from the process

In addition, to the overall equipment lifetime, **FRIMA** supplied specific durability estimates for the magnetron, the core component that generates microwave energy has a lifetime of 10,000 hours. Therefore, the study includes scheduled replacement costs at the intervals indicated by **FRIMA**. These replacement parts are reflected as operational expenditures over the 20-year period.

Moreover, microwave pyrolysis requires a continuous nitrogen flow to operate. **FRIMA** provided the nitrogen consumption rate, which has been integrated into the model as a

recurring operating cost. The nitrogen demand is treated as proportional to the operational hours of the system.

Energy consumption for both drying and pyrolysis is based on the mass and energy balance results shared by **PMI**. These simulations directly determine electricity-related operating costs, using Spanish electricity price assumptions for consistency with the LCA and other processes in the LCC.

*Table 15: PSILCA processes corresponding to Cultivation and harvesting of feedstock*

| Process/equipment                  | PSILCA process                 | Worker hour/kg |
|------------------------------------|--------------------------------|----------------|
| Microwave Pyrolysis machinery - DE | Machinery and equipment n.e.c. | 3.58E-02       |
| Replacement parts                  | Machinery and equipment n.e.c. | 3.58E-02       |

#### 7.1.8.3 Gas fraction and Bioliquid processing

For the gas fraction processing stage cost estimates were primarily provided by **PMI**, with additional refinement from **US**, especially additional estimations regarding component-specific replacement rates and catalyst requirements. Using Deliverable 4.1 as a reference, **US** supplied details on the catalysts considered for the WGS and reforming steps, including both a commercial Fe-Cr catalyst and the homemade formulations developed within FLEXBY based on Fe and Fe–Ni supported on ceria–alumina. These inputs, together with raw material and indicative lifetimes, were incorporated into the operational expenditure model.

For the bioliquid upgrading stage, data collection followed the same path as the gas fraction processing. Estimate cost inputs were primarily provided by **PMI** and further refined by **US**, who supplied updated estimates for equipment components, replacement frequencies, and catalyst consumption. Again, using Deliverable 4.1 as reference, **US** also specified the catalysts developed for the HDO pathway, including the homemade activated-carbon-supported formulations based on Ru, Ni and Fe. These catalysts differ from those designed for the gas fraction upgrading route, reflecting the different reaction environments involved.

As for the other FLEXBY processes, a 20-year lifetime is assumed for the integrated demonstrator, while individual components follow their own maintenance cycles. Key replacement items include mass-flow controllers, quartz liners, WGS reactor stainless-steel tubes, and electric furnaces/heaters used as heat exchangers. And tubing maintenance. **US** also provided raw material and catalyst information for both WGS and reforming steps, which is incorporated into operational expenditures.

The integrated demonstrator carrying out both processing stages is in the same location, at present, Seville in Spain. The social indicators were added for the overall processing steps, with social indicator data taken from the manufacturing of chemicals and chemical products in Spain.

*Table 16: PSILCA processes corresponding to processing pyrolysis fractions*

| Process/equipment       | PSILCA process                                      | Worker hour/USD |
|-------------------------|-----------------------------------------------------|-----------------|
| Gas fraction processing | Manufacture of chemicals and chemical products - ES | 4.55E-03        |
| Bioliquid processing    | Manufacture of chemicals and chemical products - ES | 1.43E-02        |

#### 7.1.8.4 Biochar handling

The biochar fraction processing and applications are as described in 5.2.1.5. The results are mainly influenced by the stages leading upto pyrolysis.

## 7.2 Results and interpretation

The results are presented separately for the three pathways after the pyrolysis step of the FLEXBY system, biofuel (chosen as main reference) produced from the bioliquid processing along with electricity, whose results are reported separately, pyro-gas and biochar. The multifunctionality in the product system is handled as described in section 6.1. The results are given per 1 kg of biofuel and the corresponding amounts of the other fractions scaled accordingly, as shown in Table 7.

The impacts reported here are based on the preliminary LCA data and consider the upstream supply chain for machinery, equipment, and energy inputs, which introduces several social risk hotspots. These risks reflect conditions associated with conventional

industrial manufacturing, metals extraction, and energy production. As such, the results can be interpreted as guidance on topics that can be proactively assessed and addressed in the project.

The first set of results are displayed as radar charts. The charts display results obtained in medium risk hours for the 106 impact categories, each corresponding to the indicator by the same name, were normalised using Microsoft Excel and adapted for the radar chart (inspired by Gavrilan, V., 2024). The results used in the charts are presented in the appendix. A second perspective is presented by showing a breakdown of the baseline scenario S2.1 and highlighting the contribution of individual stages to the hotspots. The results reveal hotspots associated with the six stakeholder groups of Workers, Value Chain Actors, Local community, Children and Society

### 7.2.1 Bioliquid pathway

The radar charts in Figure 17: Hotspot analysis of S2.1, S2.1-SE and S5.1 for the production of biofuels with the FLEXBY system and Figure 18 shows the hotspots in medium risk hours of the product systems across all the social indicators (both country and sector based), and Figure 19 shows the contributions of individual stages to the sector indicators. Within the *workers stakeholder* category, the most prominent potential sector-level hotspots are associated with *health and safety*, notably the rate of fatal accidents at the workplace (I15) and the *rate of non-fatal accidents at the workplace* (I16). These indicators show elevated medium risk hours across industrial processing stages such as pyrolysis and HDO-related energy use, pyrolysis machinery (a larger contribution due to the higher cost) and machinery replacement activities. In addition, the indicator *evidence of violations of laws and employment regulations* (I4), under the subcategory *social benefits and legal issues*, represents a significant hotspot, indicating structural compliance risks in the industrial sectors supplying equipment, energy, and materials to the FLEXBY system. These sector-level impacts are consistent with upstream manufacturing and heavy-industry activities, including metal processing, machinery fabrication, and chemical production.

Indicators linked to the *fair salary* subcategory also contribute notably to the sector-level social risk profile. In particular, *sector average wage per month* (I17) and *living wage per month* (I9) indicate risks related to income adequacy within the sectors involved in biofuel processing and infrastructure supply. Furthermore, employment structure indicators such as *informal employment* (I55-I57) and international *migrant workers in the sector*

(I59) point to labour arrangements that are typically associated with reduced job security and social protection, reinforcing the relevance of employment quality as a social issue in the FLEXBY supply chain.

Gender-related impacts form a distinct hotspot cluster under the *discrimination* subcategory. Elevated medium risk hours for the *gender wage gap* (I7) and *women in the sectoral labour force* (I23) reflect gender inequalities within industrial and energy-related sectors; these are the typical industry values from ILOSTAT. These indicators are interpreted as value-chain-level risks rather than direct project-level impacts, indicating that gender-related social risks are embedded in upstream sectoral contexts rather than generated by FLEXBY operations themselves.

At the *society stakeholder* level, several country-level indicators provide important contextual information for interpreting the sectoral hotspots. Elevated medium risk hours for *biodiversity and habitat* (I32), *ecosystem services* (I34), and the number of *threatened species* (I64) indicate that the supply chain has some ecological sensitivity. Additional contextual indicators, including *unemployment rate in the country* (I75), *population below the national poverty line* (I67), and *governance-related indicators such as freedom of the press* (I40) and *political stability and absence of violence* (I65), describe the national conditions in Spain (pyrolysis and bioliquid processing, as well as machinery involved in the processing), Portugal (feedstock growth), Germany and Japan (sourcing of pyrolysis machinery).

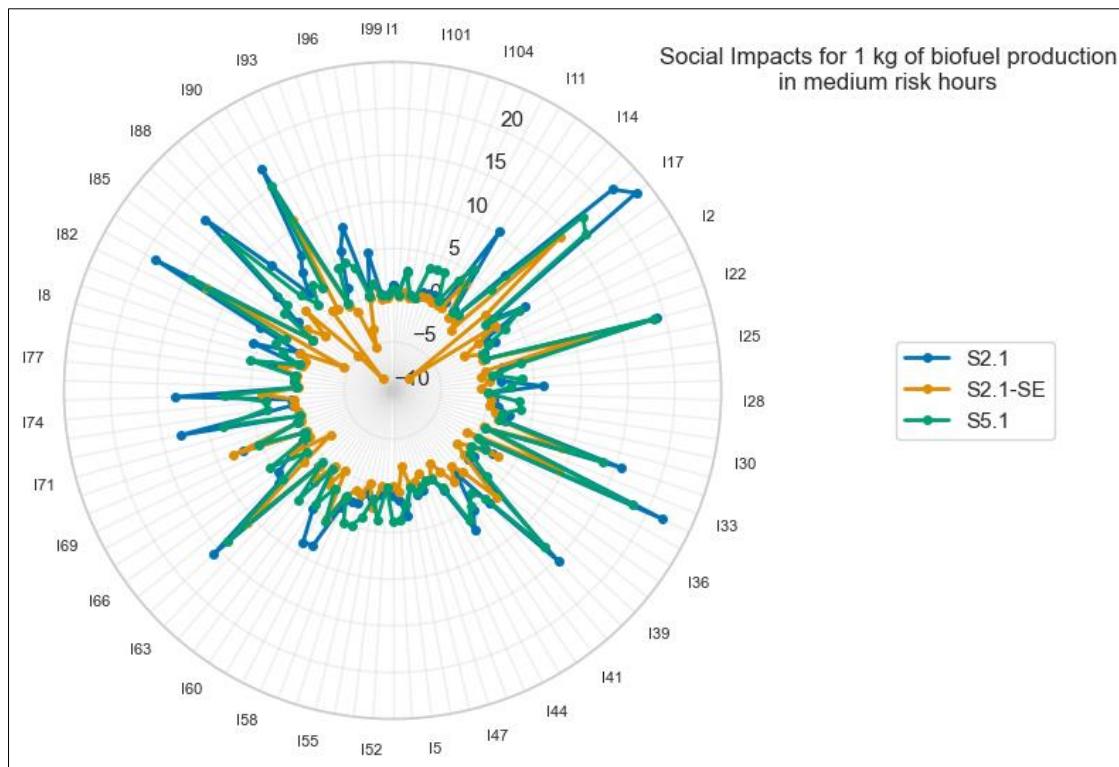



Figure 17: Hotspot analysis of S2.1, S2.1-SE and S5.1 for the production of biofuels with the FLEXBY system

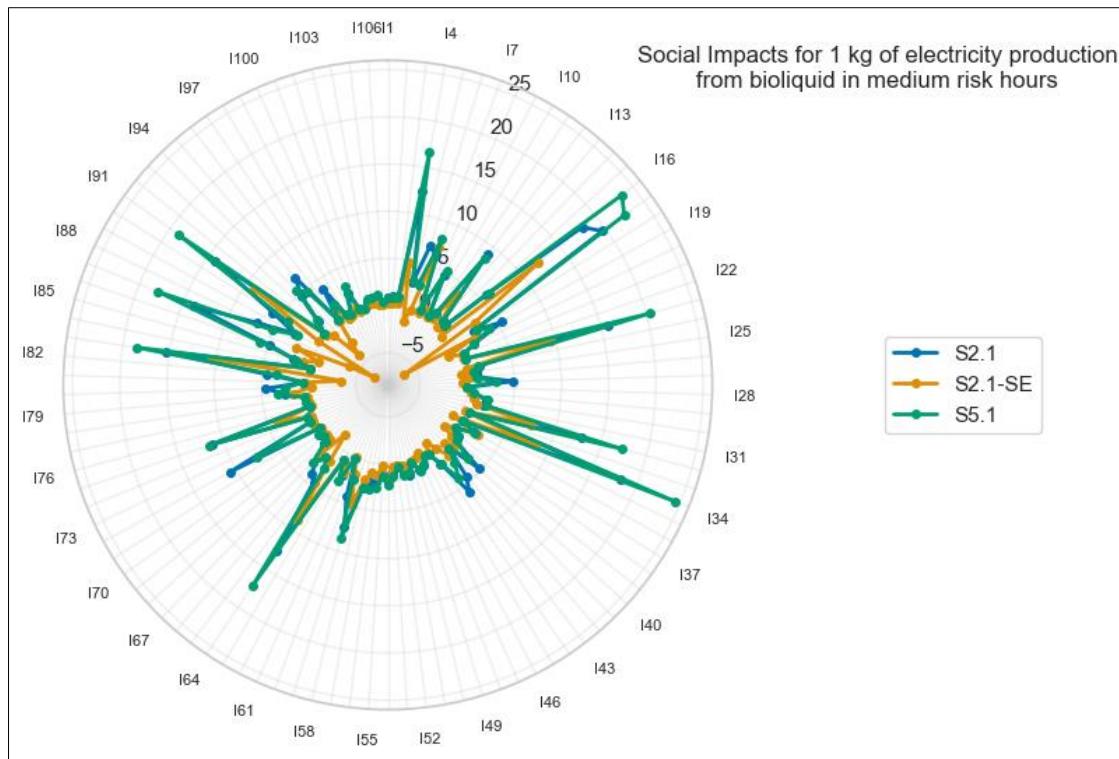



Figure 18: Hotspot analysis of S2.1, S2.1-SE and S5.1 for the production of electricity from the gaseous fraction of the bioliquid from the FLEXBY system

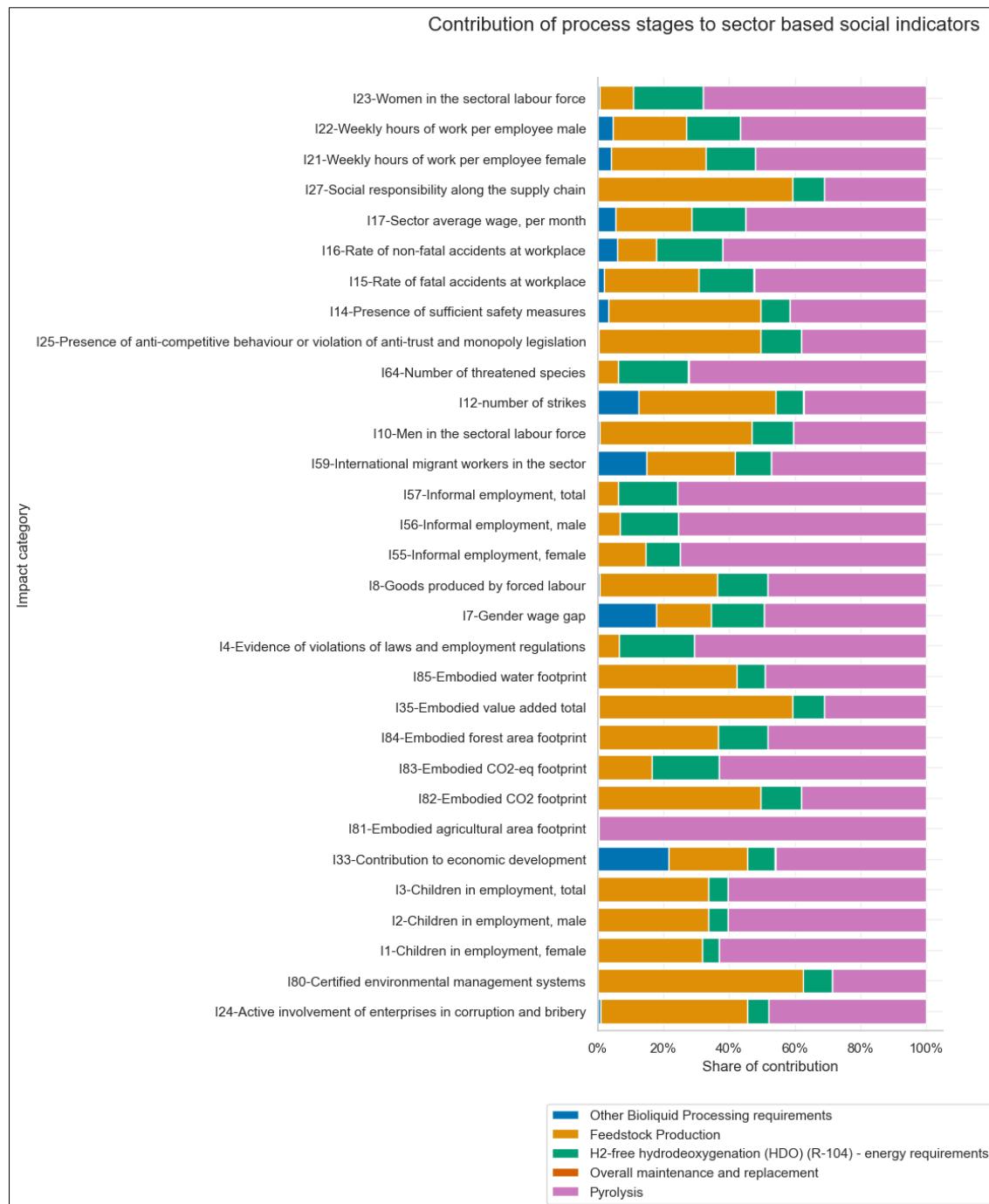



Figure 19 - Relative contributions of process stages to the sector social indicators for the production of biofuel

### 7.2.2 Gas fraction and biochar pathways

The radar charts in Figure 20 and Figure 21 show the hotspots for the biochar and electricity production from gas fraction. For the biochar and gas fraction fractions, the results represent partitioned medium risk hours after addressing multifunctionality, consequently, Stage 1 (Feedstock production and transport) and Stage 3 (Pyrolysis) retain very similar relative hotspot structures for both co-products because they are largely driven by the same shared upstream inputs related to the feedstock and pyrolysis (energy, equipment, and industrial supply chains). In the radar-chart representation (data in Appendix 13 and Appendix 14), the higher potential sector-level hotspots are associated with the *workers and value chain actors* stakeholders, especially *labour rights and regulatory compliance* (I4 Evidence of violations of laws and employment regulations), *occupational health and safety* (I15–I16 fatal and non-fatal accidents), *wage and employment conditions* (I17 Sector average wage, I55–I57 informal employment, I59 migrant workers in the sector), and *gender-related labour structure* (I7 gender wage gap, I23 women in the sectoral labour force). The *society* indicators provide the geographic context in which these sector risks occur (Spain for conversion and processing, Portugal for feedstock sourcing), with higher *medium risk hours in ecosystem- and resource-related* indicators (e.g., I32 Biodiversity & Habitat, I34 Ecosystem services, I64 threatened species) reflecting the broader socio-environmental conditions of FLEXBY.

For the gas fraction, as shown in Figure 21, Stage 4.3 Gas fraction processing, includes steam reforming and water gas shift (WGS) processes, which introduce a different set of upstream values (notably energy, catalysts and process equipment associated with reforming and WGS units). The negative medium risk hours are due to the assumptions of avoided impacts from the valorisation of ammonia.

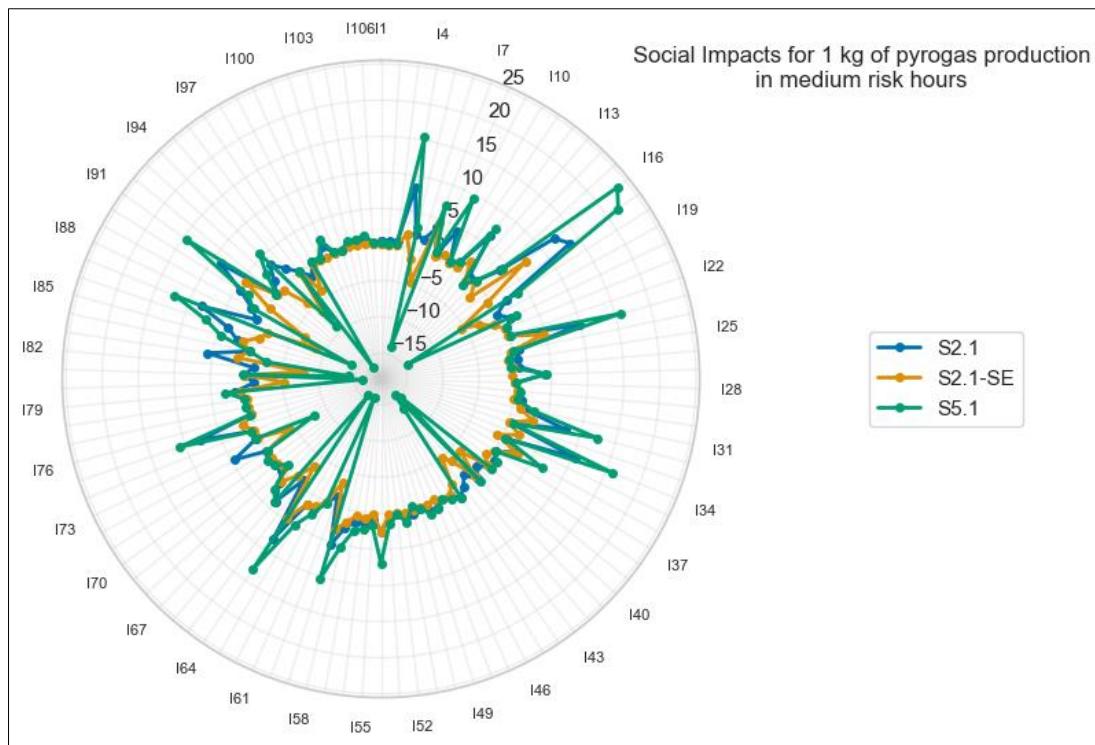



Figure 20: Hotspot analysis of S2.1, S2.1-SE and S5.1 for the production of electricity from the gas fraction pathway of the FLEXBY system

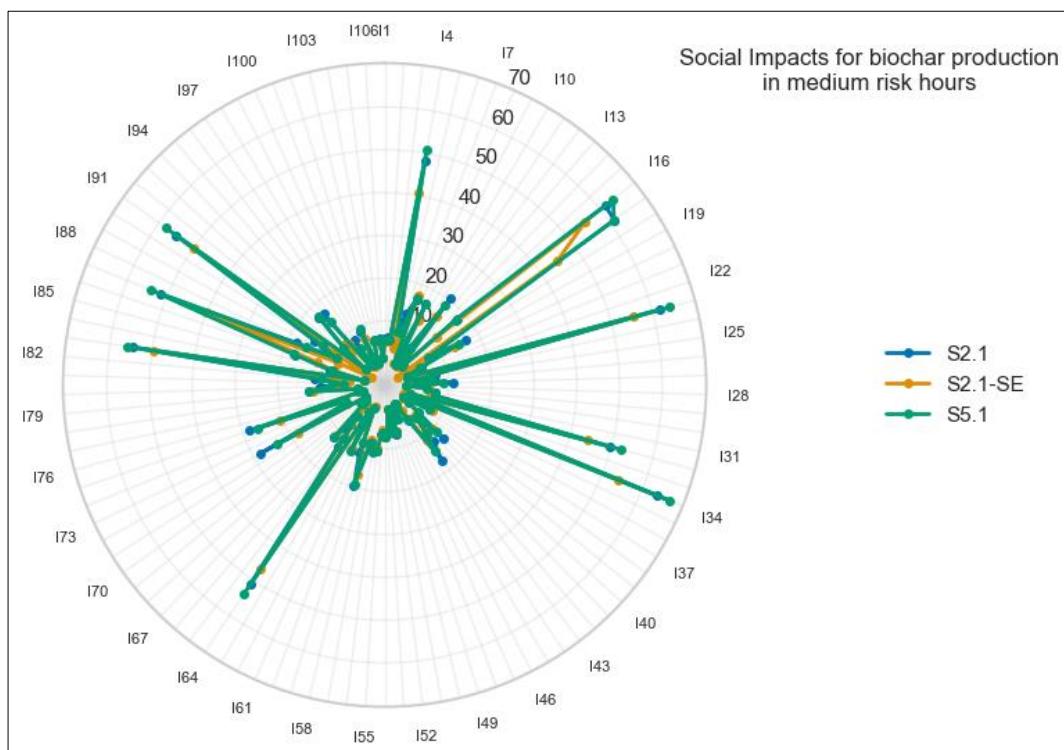



Figure 21: Hotspot analysis of S2.1, S2.1-SE and S5.1 of biochar in the FLEXBY system

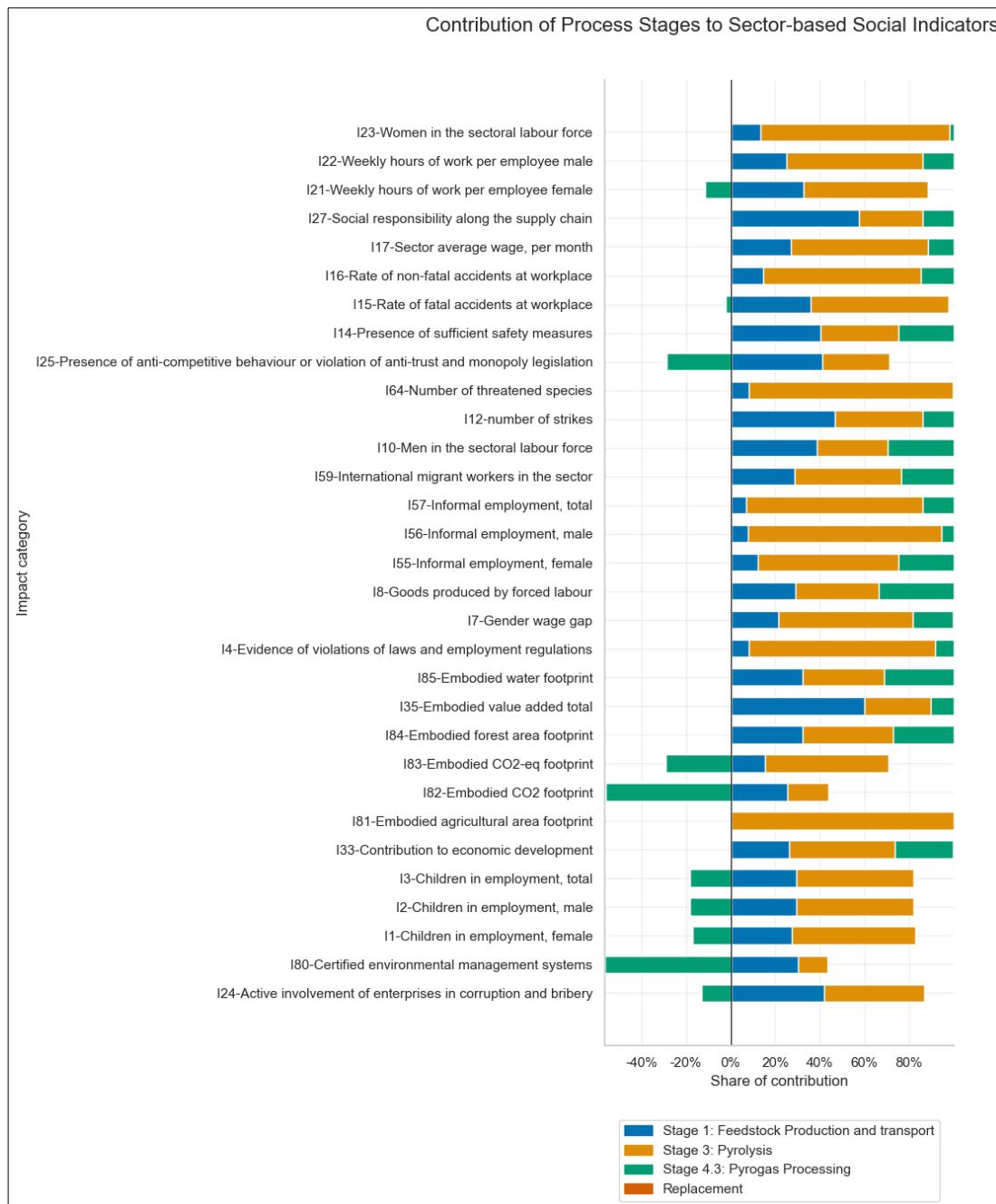



Figure 22: Relative contributions of process stages to the sector social indicators for the production of electricity from gas fraction

Across all three FLEXBY pathways, the Contribution to economic development (I33) indicates the value creation along the system's life cycle. This contribution is linked to activities such as manufacturing and maintaining processing machinery, producing and handling feedstocks, and operating and servicing pyrolysis and upgrading units, which together support employment, skills development, and technical learning in industrial and energy-related sectors.

## 7.3 Integration of Social Surveys within the Social LCA Framework

In addition to the database-driven social LCA conducted in this case, a structured social survey was initially designed to capture perception-based, qualitative, and stakeholder-specific social impacts of the FLEXBY system, found in the file - Supplementary information '***Supplementary information – FLEXBY Social sustainability survey***'.

The survey complements the quantitative medium-risk-hour results by providing contextual insights from technology expert perspectives, particularly relevant at the current early TRL of FLEXBY. The survey is aimed at exploration of expected positive and negative social effects, perceived risks, social acceptance, learning and upskilling potential, and views on just transition, innovation, and governance. This is particularly important for emerging technologies where large-scale operational data is limited, and future deployment pathways are still evolving.

The use of Likert-scale questions enables semi-quantitative comparison across life-cycle stages and stakeholder groups, while open-ended questions support the identification of social opportunities, concerns, and mitigation pathways not captured by predefined indicators. The survey is not used to replace the social LCA results, but rather to triangulate findings, validate hotspot interpretations, and inform future data collection priorities, including primary data gathering and stakeholder interviews as the FLEXBY system progresses toward higher TRL scale operations.

## 8 From the preliminary LCC and S-LCA to the final integrated sustainability study

As the FLEXBY system develops and more experimental results are obtained, the final sustainability assessment will be significantly refined. By the project's end, testing of the fully designed microwave pyrolysis unit with real feedstocks will provide empirical energy demands and laboratory analyses will also clarify the properties of bio-oil, gas fraction, and biochar, enabling more accurate evaluation of valorisation pathways, potential revenues, and overall system economics.

The final study will also integrate an ex-ante perspective, accounting for technological learning, market evolution, and system scaling to assess long-term economic potential. Real operational data will allow more precise modelling of maintenance, component replacement, and system reliability, while co-location with wastewater treatment will be better quantified, capturing net economic and environmental benefits.

The early social LCA study relies on the LCA models developed for the environmental LCA and life cycle costing studies, with additional social data being integrated from the process-based background database of SOCA 4.0. The results indicate the medium-risk hours based on social data collected across different years from the respective global sectors, future studies will also use the input-output database of PSILCA. As the FLEXBY system moves from conceptual design to pilot operation, greater emphasis can be placed on foreground social data, including working conditions, safety management practices, and organisational structures directly associated with system operation. The study will evolve from this preliminary, sector-based screening toward a more refined assessment that progressively incorporates technology-specific, site-specific, and process-specific social information, for which an initial survey that will be circulated can be found in the supplementary information File 1. Gender based social targets will be set and measures to reach targets will be implemented throughout the project development to address the gender equality issues that arise in similar sectors.

This study shows inherited upstream social risks and further studies will illustrate the influence that project design and governance can have on them, thereby strengthening the robustness and decision relevance of the final integrated sustainability assessment in line with UNEP/SETAC social LCA guidance.

## 9 Conclusions

At the current TRL of the FLEXBY system, absolute cost figures are not intended to be interpreted as indicators of economic feasibility or site-specific social impacts; however, the preliminary socio-economic assessment provides an early identification of hotspots and structural cost drivers that can guide further system optimisation. Similarly, the social LCA results should be interpreted as a screening-level identification of potential social risk hotspots to focus on, rather than as definitive indicators of social performance

Across all scenarios, energy demand (particularly during pyrolysis) dominates the life cycle costs, followed by catalyst-related raw material expenses in the upgrading steps. The dominant social hotspots are associated with worker health and safety, labour rights compliance, wage conditions, and gender-related labour structures in manufacturing, energy, and equipment supply sectors. These findings are consistent with the industrial nature of microwave pyrolysis, upgrading, and auxiliary processing.

These findings (especially related to the energy consumption during the pyrolysis step) are aligned with expectations from the state-of-the-art literature, where thermo-chemical conversion of wet, heterogeneous biomass is known to be energy-intensive. Nevertheless, it is important to note that, in the planned FLEXBY configuration, this energy demand will be entirely supplied by photovoltaic sources, significantly mitigating the environmental burden of the energy consumption. Moreover, the FLEXBY configuration benefits from critical advantages, one of these as demonstrated in Deliverable 7.1, microwave-assisted pyrolysis displays lower energy consumption than both conventional and flash pyrolysis, and it uses only photovoltaic energy. Eventually, further reductions in energy demand are expected through the optimisation process foreseen in WP5, which will aim to identify the best operating conditions by balancing energy input and process efficiency; however, this activity has not yet started and therefore is not reflected in the current results.

The assessment highlighted the advantage of wastewater treatment as an additional service of FLEXBY when using the microalgae feedstock. When microalgae are produced as a by-product of wastewater treatment rather than as a dedicated feedstock, the system benefits from substantial cost offsets. This reflects both the state of the art in microalgae-based biorefineries and the project's long-term vision: coupling biomass

production to an existing service that already requires nutrient removal and CO<sub>2</sub> uptake. Under such integrated system, feedstock costs approach zero or become net credits.

Furthermore, the project is exploring multiple valorisation routes for all process fractions, which is essential for the economics of emerging biorefinery concepts. The main products (biofuel, electricity from gas fraction, both from the bioliquid and gas fraction itself) are being valorised within the current system boundaries, demonstrating circularity within the system, which will be a focus in upcoming LCAs. Other products also show promising value potential. Specifically:

- Biochar is still under investigation by the consortium, but several realistic valorisation pathways already exist: chemical activation (since physical activation has been advised against by **CSIC** due to the physical property of the biochar), or direct application as a soil amendment or in the construction sector. These pathways could provide economic and environmental co-benefits, reduce disposal costs and improve overall system circularity.
- Ammonia recovery from the process offers another valorisation opportunity. If captured and valorised as a usable product, it will contribute to reducing operational costs and social impacts from the production of ammonia, while reducing emissions associated with nitrogen losses to the atmosphere.

Overall, the study highlights the project's strategic choices to valorise outputs but have potential to reduce costs, however these will be thoroughly assessed and further developing the project with measures to check potential social hotspots can help sustainably scale the process system to higher TRLs.

## 10 References

Ağbulut, Ü., Sirohi, R., Lichfouse, E., Chen, W. H., Len, C., Show, P. L., ... & Hoang, A. T. (2023). Microalgae bio-oil production by pyrolysis and hydrothermal liquefaction: Mechanism and characteristics. *Bioresource technology*, 376, 128860.

Ahmed, S., Warne, T., Smith, E., Goemann, H., Linse, G., Greenwood, M., ... & Stoy, P. C. (2021). Systematic review on effects of bioenergy from edible versus inedible feedstocks on food security. *npj Science of Food*, 5(1), 9

Amaro, H. M., Salgado, E. M., Nunes, O. C., Pires, J. C., & Esteves, A. F. (2023). Microalgae systems - environmental agents for wastewater treatment and further potential biomass valorisation. *Journal of Environmental Management*, 337, 117678. <https://doi.org/10.1016/j.jenvman.2023.117678>

Askaripour, H. (2019). Effect of operating conditions on the performance of a PEM fuel cell. *International Journal of Heat and Mass Transfer*, 144, 118705.

Brennan, L., & Owende, P. (2010). Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. *Renewable and sustainable energy reviews*, 14(2), 557-577.

Caballero, J. J. B., Zaini, I. N., & Yang, W. (2022). Reforming processes for syngas production: A mini-review on the current status, challenges, and prospects for biomass conversion to fuels. *Applications in Energy and Combustion Science*, 10, 100064.

Chamkalani, A., Zendehboudi, S., Rezaei, N., & Hawboldt, K. (2020). A critical review on life cycle analysis of algae biodiesel: current challenges and future prospects. *Renewable and Sustainable Energy Reviews*, 134, 110143.

Chisti, Y. (2007). Biodiesel from microalgae. *Biotechnology advances*, 25(3), 294-306.

Ciroth, A., & Arvidsson, R. (Eds.). (2021). Life cycle inventory analysis: methods and data. *Springer Nature*.

Collotta, M., Champagne, P., Mabee, W., Tomasoni, G., Alberti, M., Busi, L., & Leite, G. B. (2016). Environmental assessment of co-location alternatives for a microalgae cultivation plant: a case study in the city of Kingston (Canada). *Energy Procedia*, 95, 29-36.

Dutta, K., Daverey, A., & Lin, J. G. (2014). Evolution retrospective for alternative fuels: First to fourth generation. *Renewable energy*, 69, 114-122.

Drücke, M., Lucht, W., von Bloh, W., Petri, S., Sakschewski, B., Tobian, A., ... & Thonicke, K. (2024). The long-term impact of transgressing planetary boundaries on biophysical atmosphere–land interactions. *Earth System Dynamics*, 15(2), 467-483.

Elfallah, S., Benzaouak, A., Bayssi, O., Hirt, A., Mouaky, A., El Fadili, H., ... & El Mahi, M. (2024). Life cycle assessment of biomass conversion through fast pyrolysis: A systematic review on technical potential and drawbacks. *Bioresource Technology Reports*, 26, 101832.

EurObserv-ER (2022) Employment & Turnover 2020. Available at: <https://www.eurobserv-er.org/online-database/>

Ferrera-Lorenzo, N., Fuente, E., Suárez-Ruiz, I., & Ruiz, B. (2014). KOH activated carbon from conventional and microwave heating system of a macroalgae waste from the Agar–Agar industry. *Fuel processing technology*, 121, 25-31.

European Union. (2023). Directive (EU) 2023/2413 of the European Parliament and of the Council of 18 October 2023 amending Directive (EU) 2018/2001, Regulation (EU) 2018/1999 and Directive 98/70/EC as regards the promotion of energy from renewable sources. *Official Journal of the European Union*, L 2023/2413.

European Union. (2023). Regulation (EU) 2023/2405 on ensuring a level playing field for sustainable air transport (ReFuelEU Aviation). *Official Journal of the European Union*, L 2023/2405.

European Union. (2023). Regulation (EU) 2025/1805 on the use of renewable and low-carbon fuels in maritime transport (FuelEU Maritime). *Official Journal of the European Union*, L 2023/1805.

Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Bakker, D. C., Hauck, J., & Zeng, J. (2025). Global Carbon Budget 2025. *Earth System Science Data Discussions*, 2025, 1-139. *Preprint*

Gavrilan, V. (2024). Developing Prospective S-LCA Using a case study approach on wind power to problematise the assessment of prospective social impacts via S-LCA methodology.

Geng, Y., Shaukat, A., Azhar, W., Raza, Q. U. A., Tahir, A., Abideen, M. Z. U., ... & Rehim, A. (2025). Microalgal biorefineries: a systematic review of technological trade-offs and innovation pathways. *Biotechnology for Biofuels and Bioproducts*, 18(1), 93.

Hamed, A., Eisfeldt, F., & Ciroth, A. (2025). \*Soca v.4.0 add-on: Adding social data to ecoinvent\* [Technical report]. GreenDelta GmbH. [https://www.researchgate.net/publication/395134821\\_Soca\\_v40\\_add-on\\_Adding\\_social\\_data\\_to\\_ecoinvent](https://www.researchgate.net/publication/395134821_Soca_v40_add-on_Adding_social_data_to_ecoinvent) :contentReference[oaicite:0]{index=0}

International Organization for Standardization. *ISO 14067:2018 Greenhouse gases — Carbon footprint of products — Requirements and guidelines for quantification*. Geneva, Switzerland; 2018.

International Organization for Standardization. *ISO 14040:2006 Environmental Management — Life cycle assessment — Principles and framework*. Geneva, Switzerland; 2006.

International Organization for Standardization. *ISO 14044:2006 Environmental Management — Life cycle assessment — Requirements and guidelines*. Geneva, Switzerland; 2006.

International Renewable Energy Agency & International Labour Organization. (2024). Renewable Energy and Jobs – Annual Review 2024. IRENA.

IPCC, 2023: Sections. In: *Climate Change 2023: Synthesis Report*. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland, pp. 35-115, doi: 10.59327/IPCC/AR6-9789291691647

Kostidi, E., & Lyridis, D. (2024). Social impact assessment of biofuel production for maritime and aviation sectors: a case study of a pilot biorefinery project. *Frontiers in Energy Research*, 12, 1454862.

Lardon, L., Hélias, A., Sialve, B., Steyer, J. P., & Bernard, O. (2009). Life-cycle assessment of biodiesel production from microalgae.

Lenzen, M., Moran, D., Kanemoto, K., Geschke, A. (2013): Building Eora: A Global Multi-regional Input-Output Database at High Country and Sector Resolution, *Economic Systems Research*, 25:1, 20-49, DOI:10.1080/09535314.2013.769938

Mat Aron, N. S., Khoo, K. S., Chew, K. W., Show, P. L., Chen, W. H., & Nguyen, T. H. P. (2020). Sustainability of the four generations of biofuels—a review. *International Journal of Energy Research*, 44(12), 9266-9282.

Mehariya, S., Goswami, R. K., Verma, P., Lavecchia, R., & Zuorro, A. (2021). Integrated approach for wastewater treatment and biofuel production in microalgae biorefineries. *Energies*, 14(8), 2282

Murphy, F., & Gusciute, E. (2024). Review of literature on social life cycle assessment of bioenergy. IEA Bioenergy Task 36. <https://www.ieabioenergy.com/wp-content/uploads/2025/01/Review-of-literature-on-SLCA-Final-1-1.pdf>

Naik, S. N., Goud, V. V., Rout, P. K., & Dalai, A. K. (2010). Production of first and second generation biofuels: a comprehensive review. *Renewable and sustainable energy reviews*, 14(2), 578-597

Norris, G.A. (2006): Social impacts in product life cycles – Towards life cycle attribute assessment. *International Journal of Life Cycle Assessment* 11 (1): 97 - 104

Pérez-López, P., Rajaonison, A., Zebian, B., Bouallou, C., González-Fernández, C., Greses, S., ... & Acién Fernández, F. G. (2025). Exploiting outcomes of life cycle costing to conduct coherent screening social life cycle assessments of emerging systems: a case study of microalgae biorefineries. *The International Journal of Life Cycle Assessment*, 30(4), 770-791.

Rafa, N., Ahmed, S. F., Badruddin, I. A., Mofijur, R. M., & Kamangar, S. (2021). Strategies to produce cost-effective third-generation biofuel from microalgae. *Frontiers in Energy Research*, 9, 749968.

Rockström, J., Steffen, W., Noone, K., Persson, Å., Chapin III, F. S., Lambin, E., ... & Foley, J. (2009). Planetary boundaries: exploring the safe operating space for humanity. *Ecology and society*, 14(2).

Roles, J., Yarnold, J., Hussey, K., & Hankamer, B. (2021). Techno-economic evaluation of microalgae high-density liquid fuel production at 12 international locations. *Biotechnology for Biofuels*, 14(1), 133.

SABANA. (2020). Sustainable Algae Biorefinery for Agriculture and Aquaculture (Grant Agreement 727874). Horizon 2020 European Commission. <https://doi.org/10.3030/727874>

Sims, R. E., Mabee, W., Saddler, J. N., & Taylor, M. (2010). An overview of second generation biofuel technologies. *Bioresource technology*, 101(6), 1570-1580.

Singh, J., & Gu, S. (2010). Commercialization potential of microalgae for biofuels production. *Renewable and sustainable energy reviews*, 14(9), 2596-2610.

Sippula, O., Huttunen, K., Hokkinen, J., Kärki, S., Suhonen, H., Kajolinna, T., ... & Jokiniemi, J. (2019). Emissions from a fast-pyrolysis bio-oil fired boiler: Comparison of health-related characteristics of emissions from bio-oil, fossil oil and wood. *Environmental pollution*, 248, 888-897.

Sivaramakrishnan, R., Suresh, S., Kanwal, S., Ramadoss, G., Ramprakash, B., & Incharoensakdi, A. (2022). Microalgal biorefinery concepts' developments for biofuel and bioproducts: current perspective and bottlenecks. *International Journal of Molecular Sciences*, 23(5), 2623

SmartCHP (2020) Smart and flexible heat and power from biomass derived liquids for small-scale CHP application (Grant Agreement 815259). Horizon 2020 European Commission <https://cordis.europa.eu/project/id/815259>

Tomlin, A. S. (2021). Air quality and climate impacts of biomass use as an energy source: a review. *Energy & Fuels*, 35(18), 14213-14240.

Ugolini, M., Recchia, L., Avolio, C., & Yebra, C. B. (2025). Social Life Cycle Assessment of Multifunctional Bioenergy Systems: Social and Socioeconomic Impacts of Hydrothermal Treatment of Wet Biogenic Residues into Intermediate Bioenergy Carriers and Sustainable Solid Biofuels. *Energies*, 18(14), 3695. <https://doi.org/10.3390/en18143695>

United Nations Environment Programme (2019). *Emissions Gap Report 2019*. UNEP, Nairobi.

VekPolicy. (2025, March). *India's biofuels landscape: Recent government policies and support mechanisms*.

Wang, B., Li, Y., Wu, N., & Lan, C. Q. (2008). CO<sub>2</sub> bio-mitigation using microalgae. *Applied microbiology and biotechnology*, 79(5), 707-718.

Wiatrowski, Matthew, Bruno Klein, Thai Ngan Do, Longwen Ou, Hao Cai, Nicholas Carlson, and Ryan Davis. 2025. *Technology Case Study: Techno-Economic and Life Cycle Analysis for Microalgae Conversion Pathways to Fuels and Products*. Golden, CO: National Renewable Energy Laboratory. NREL/TP-5100-91854. <https://www.nrel.gov/docs/fy25osti/91854.pdf>.

Williams, M. L., Williams, M., Beevers, S., Kitwiroon, N., Dajnak, D., Walton, H., Holland, M. (2018). Public health air pollution impacts of pathway options to meet the 2050 UK Climate Change Act target: a modelling study. *Public Health Research*, 6(7), 1-124.

## 11 Appendix 1 – Results of the social hotspots weighting method applied on S2.1, S2.1-SE and S5.1 for the production of biofuels

|     | Name                                                      |         |                                                  | S2.1     | S2.1-SE   | S5.1     |
|-----|-----------------------------------------------------------|---------|--------------------------------------------------|----------|-----------|----------|
| I17 | Sector average wage, per month                            | Workers | Fair salary                                      | 2.34E+01 | 2.66E+00  | 1.64E+01 |
| I16 | Rate of non-fatal accidents at workplace                  | Workers | Health and safety                                | 2.17E+01 | 1.41E+01  | 1.74E+01 |
| I23 | Women in the sectoral labour force                        | Workers | Discrimination                                   | 1.92E+01 | 1.15E+01  | 1.87E+01 |
| I4  | Evidence of violations of laws and employment regulations | Workers | Social benefits, legal issues                    | 1.53E+01 | 5.69E+00  | 1.32E+01 |
| I12 | number of strikes                                         | Workers | Freedom of association and collective bargaining | 1.03E+01 | 3.62E+00  | 5.41E+00 |
| I6  | Frequency of forced labour                                | Workers | Forced labour                                    | 8.65E+00 | -3.00E-01 | 1.98E+00 |
| I7  | Gender wage gap                                           | Workers | Discrimination                                   | 7.04E+00 | 8.18E+00  | 5.25E+00 |
| I15 | Rate of fatal accidents at workplace                      | Workers | Health and safety                                | 6.99E+00 | -1.13E+00 | 4.84E+00 |
| I19 | Trafficking in persons                                    | Workers | Forced labour                                    | 6.62E+00 | 2.70E+00  | 5.91E+00 |
| I9  | Living wage, per month                                    | Workers | Fair salary                                      | 5.72E+00 | 4.80E-01  | 3.97E+00 |
| I5  | Freedom of association and collective bargaining          | Workers | Freedom of association and collective bargaining | 3.24E+00 | -1.97E+00 | 2.04E+00 |
| I18 | Trade union density                                       | Workers | Freedom of association and collective bargaining | 2.84E+00 | -8.06E+00 | 1.93E+00 |

|     |                                                             |                    |                                 |          |           |          |
|-----|-------------------------------------------------------------|--------------------|---------------------------------|----------|-----------|----------|
| I20 | Violations of mandatory health and safety standards         | Workers            | Health and safety               | 1.98E+00 | -1.71E+00 | 1.19E+00 |
| I2  | Children in employment, male                                | Workers            | Child labour                    | 1.20E+00 | 3.20E-01  | 3.60E+00 |
| I3  | Children in employment, total                               | Workers            | Child labour                    | 1.20E+00 | 3.20E-01  | 3.60E+00 |
| I1  | Children in employment, female                              | Workers            | Child labour                    | 1.07E+00 | 3.20E-01  | 6.80E-01 |
| I11 | Minimum wage, per month                                     | Workers            | Fair salary                     | 8.40E-01 | 1.40E-01  | 3.50E+00 |
| I13 | Paid maternity leave                                        | Workers            | Social benefits, legal issues   | 7.60E-01 | -4.60E-01 | 3.30E-01 |
| I14 | Presence of sufficient safety measures                      | Workers            | Health and safety               | 3.90E-01 | -5.00E-02 | 4.80E-01 |
| I21 | Weekly hours of work per employee female                    | Workers            | Working time                    | 3.10E-01 | 7.00E-02  | 2.30E-01 |
| I8  | Goods produced by forced labour                             | Workers            | Forced labour                   | 2.90E-01 | -1.50E-01 | 1.70E-01 |
| I22 | Weekly hours of work per employee male                      | Workers            | Working time                    | 2.80E-01 | 2.00E-02  | 2.20E-01 |
| I10 | Men in the sectoral labour force                            | Workers            | Discrimination                  | 2.20E-01 | -4.00E-02 | 1.10E-01 |
| I27 | Social responsibility along the supply chain                | Value Chain Actors | Promoting social responsibility | 5.88E+00 | -8.10E-01 | 2.50E+00 |
| I24 | Active involvement of enterprises in corruption and bribery | Value Chain Actors | Corruption                      | 1.77E+00 | -4.00E-02 | 3.77E+00 |
| I26 | Public sector corruption                                    | Value Chain Actors | Corruption                      | 1.39E+00 | 2.70E-01  | 3.67E+00 |

|     |                                                                                            |                    |                                        |          |           |          |
|-----|--------------------------------------------------------------------------------------------|--------------------|----------------------------------------|----------|-----------|----------|
| I25 | Presence of anti-competitive behaviour or violation of anti-trust and monopoly legislation | Value Chain Actors | Fair competition                       | 1.27E+00 | -6.60E-01 | 5.90E-01 |
| I34 | Ecosystem services                                                                         | Society            | Nature                                 | 2.18E+01 | 9.58E+00  | 1.82E+01 |
| I64 | Number of threatened species                                                               | Society            | Nature                                 | 1.58E+01 | 1.08E+01  | 1.37E+01 |
| I32 | Biodiversity & Habitat                                                                     | Society            | Nature                                 | 1.57E+01 | 8.88E+00  | 1.36E+01 |
| I75 | Unemployment rate in the country                                                           | Society            | Local employment                       | 1.32E+01 | 3.89E+00  | 7.80E+00 |
| I72 | Sanitation coverage                                                                        | Society            | Poverty Alleviation                    | 1.30E+01 | 1.70E-01  | 8.27E+00 |
| I59 | International migrant workers in the sector                                                | Society            | Migration                              | 8.48E+00 | 5.22E+00  | 5.62E+00 |
| I43 | Global Peace Index                                                                         | Society            | Secure living condition                | 7.10E+00 | -1.10E-01 | 5.88E+00 |
| I40 | Freedom of the press                                                                       | Society            | Censorship and Oppression              | 5.71E+00 | 1.24E+00  | 5.06E+00 |
| I65 | Political stability and absence of violence                                                | Society            | Governance                             | 5.49E+00 | 1.96E+00  | 4.88E+00 |
| I42 | Global freedom scores                                                                      | Society            | Access to immaterial resources         | 5.28E+00 | 1.62E+00  | 4.70E+00 |
| I60 | Internet freedom scores                                                                    | Society            | Censorship and Oppression              | 5.03E+00 | 1.99E+00  | 4.60E+00 |
| I66 | Pollution level of the country                                                             | Society            | Safe and healthy living conditions     | 4.83E+00 | -2.04E+00 | 1.18E+00 |
| I58 | International Migrant Stock                                                                | Society            | Migration                              | 3.42E+00 | 2.27E+00  | 2.08E+00 |
| I79 | Youth unemployment                                                                         | Society            | Education and upskilling opportunities | 3.06E+00 | 1.99E+00  | 5.45E+00 |
| I62 | Life expectancy at birth                                                                   | Society            | Health and safety                      | 2.78E+00 | 2.39E+00  | 5.29E+00 |
| I67 | Population below national poverty line                                                     | Society            | Poverty alleviation                    | 2.71E+00 | 2.37E+00  | 5.29E+00 |

|     |                                                  |         |                                        |          |           |          |
|-----|--------------------------------------------------|---------|----------------------------------------|----------|-----------|----------|
| I30 | Animal protection                                | Society | Ethical treatment of animals           | 2.54E+00 | 9.80E-01  | 1.84E+00 |
| I57 | Informal employment, total                       | Society | Contribution to economic development   | 2.43E+00 | 1.15E+00  | 4.97E+00 |
| I54 | Immigration rate                                 | Society | Migration                              | 2.39E+00 | 2.44E+00  | 1.63E+00 |
| I56 | Informal employment, male                        | Society | Contribution to economic development   | 2.36E+00 | 1.50E+00  | 4.90E+00 |
| I36 | Emigration rate                                  | Society | Migration                              | 2.34E+00 | 3.09E+00  | 1.61E+00 |
| I31 | Asylum seekers rate                              | Society | Migration                              | 2.34E+00 | 1.45E+00  | 1.61E+00 |
| I44 | Global Terrorism Index                           | Society | Secure living conditions               | 1.89E+00 | -1.46E+00 | 1.42E+00 |
| I50 | Household air pollution attributable DALYs, male | Society | Health and safety                      | 1.64E+00 | 6.40E-01  | 3.76E+00 |
| I48 | Health expenditure, total                        | Society | Health and safety                      | 1.25E+00 | -2.00E-01 | 9.20E-01 |
| I55 | Informal employment, female                      | Society | Contribution to economic development   | 1.16E+00 | 0.00E+00  | 3.79E+00 |
| I63 | Net migration rate                               | Society | Migration                              | 1.14E+00 | 1.07E+00  | 5.80E-01 |
| I51 | Illiteracy rate, female                          | Society | Education and upskilling opportunities | 1.09E+00 | 1.00E-01  | 3.77E+00 |
| I47 | Health expenditure, out-of-pocket                | Society | Health and safety                      | 1.05E+00 | -8.80E-01 | 4.50E-01 |
| I53 | Illiteracy rate, total                           | Society | Education and upskilling opportunities | 9.80E-01 | 1.20E-01  | 3.71E+00 |
| I38 | Female with account at a financial institution   | Society | Gender equality and empowerment        | 9.40E-01 | -1.25E+00 | 4.40E-01 |

|     |                                                 |         |                                        |          |           |          |
|-----|-------------------------------------------------|---------|----------------------------------------|----------|-----------|----------|
| I41 | Gender inequalities                             | Society | Gender equality and empowerment        | 9.20E-01 | 1.00E-01  | 3.56E+00 |
| I68 | Public expenditure on education                 | Society | Education and upskilling opportunities | 8.70E-01 | -4.00E-02 | 4.50E-01 |
| I35 | Embodied value added total                      | Society | Contribution to economic development   | 8.10E-01 | -1.06E+00 | 3.10E-01 |
| I74 | State of democracy                              | Society | Governance                             | 7.60E-01 | 4.00E-01  | 3.45E+00 |
| I39 | Food insecurity                                 | Society | Poverty Alleviation                    | 7.00E-01 | 1.30E-01  | 3.48E+00 |
| I29 | Access to internet                              | Society | Technology development                 | 6.50E-01 | 4.10E-01  | 3.43E+00 |
| I70 | Rate of researchers                             | Society | Technology development                 | 6.40E-01 | 6.00E-02  | 4.90E-01 |
| I73 | Social Protection Expenditures                  | Society | Secure living conditions               | 5.90E-01 | 4.50E-01  | 3.39E+00 |
| I33 | Contribution to economic development            | Society | Contribution to economic development   | 5.80E-01 | 2.60E-01  | 4.30E-01 |
| I77 | Youth illiteracy rate, male                     | Society | Education and upskilling opportunities | 4.60E-01 | 2.20E-01  | 3.70E-01 |
| I78 | Youth illiteracy rate, total                    | Society | Education and upskilling opportunities | 4.60E-01 | 2.20E-01  | 3.60E-01 |
| I69 | R&D expenditures                                | Society | Technology development                 | 3.30E-01 | 1.00E-02  | 2.20E-01 |
| I52 | Illiteracy rate, male                           | Society | Education and upskilling opportunities | 2.80E-01 | 1.30E-01  | 2.40E-01 |
| I45 | Health expenditure, domestic general government | Society | Health and safety                      | 2.30E-01 | -6.00E-02 | 1.30E-01 |
| I71 | Safe access to Drinking water coverage          | Society | Poverty Alleviation                    | 1.80E-01 | -3.00E-02 | 8.00E-02 |

|     |                                                    |         |                                        |          |           |          |
|-----|----------------------------------------------------|---------|----------------------------------------|----------|-----------|----------|
| I49 | Household air pollution attributable DALYs, female | Society | Health and safety                      | 1.70E-01 | 2.00E-02  | 4.00E-01 |
| I61 | Labour productivity                                | Society | Contribution to economic development   | 1.70E-01 | -2.00E-02 | 4.10E-01 |
| I37 | Female genital mutilation 15-49                    | Society | Gender equality and empowerment        | 1.60E-01 | -4.00E-02 | 9.00E-02 |
| I76 | Youth illiteracy rate, female                      | Society | Education and upskilling opportunities | 1.40E-01 | -4.00E-02 | 9.00E-02 |
| I46 | Health expenditure, external resources             | Society | Health and safety                      | 5.00E-02 | 0.00E+00  | 4.00E-02 |
| I28 | Access to electricity                              | Society | Technology development                 | 3.00E-02 | 2.00E-02  | 6.00E-02 |

## 12 Appendix 2 – Results of the social hotspots weighting method applied on S2.1, S2.1-SE and S5.1 for the production of electricity from the gaseous fraction of bioliquids

|     | Name                                                      | Stakeholder | Subcategory                                      | S2.1     | S2.1-SE   | S5.1     |
|-----|-----------------------------------------------------------|-------------|--------------------------------------------------|----------|-----------|----------|
| I1  | Children in employment, female                            | Workers     | Child labour                                     | 9.20E-01 | 3.10E-01  | 8.70E-01 |
| I2  | Children in employment, male                              | Workers     | Child labour                                     | 1.02E+00 | 3.10E-01  | 9.40E-01 |
| I3  | Children in employment, total                             | Workers     | Child labour                                     | 1.02E+00 | 3.10E-01  | 9.40E-01 |
| I4  | Evidence of violations of laws and employment regulations | Workers     | Social benefits, legal issues                    | 1.24E+01 | 4.72E+00  | 1.66E+01 |
| I5  | Freedom of association and collective bargaining          | Workers     | Freedom of association and collective bargaining | 2.76E+00 | -1.42E+00 | 2.91E+00 |
| I6  | Frequency of forced labour                                | Workers     | Forced labour                                    | 7.07E+00 | -1.10E-01 | 2.74E+00 |
| I7  | Gender wage gap                                           | Workers     | Discrimination                                   | 6.21E+00 | 7.12E+00  | 8.11E+00 |
| I8  | Goods produced by forced labour                           | Workers     | Forced labour                                    | 2.40E-01 | -1.10E-01 | 2.30E-01 |
| I9  | Living wage, per month                                    | Workers     | Fair salary                                      | 4.73E+00 | 5.20E-01  | 5.22E+00 |
| I10 | Men in the sectoral labour force                          | Workers     | Discrimination                                   | 1.80E-01 | -2.00E-02 | 1.50E-01 |
| I11 | Minimum wage, per month                                   | Workers     | Fair salary                                      | 7.30E-01 | 1.60E-01  | 8.00E-01 |
| I12 | number of strikes                                         | Workers     | Freedom of association and collective bargaining | 8.95E+00 | 3.57E+00  | 8.54E+00 |

|     |                                                                                            |                    |                                                  |          |           |          |
|-----|--------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------|----------|-----------|----------|
| I13 | Paid maternity leave                                                                       | Workers            | Social benefits, legal issues                    | 6.30E-01 | -3.60E-01 | 4.40E-01 |
| I14 | Presence of sufficient safety measures                                                     | Workers            | Health and safety                                | 3.40E-01 | -2.00E-02 | 2.90E-01 |
| I15 | Rate of fatal accidents at workplace                                                       | Workers            | Health and safety                                | 5.78E+00 | -7.30E-01 | 6.08E+00 |
| I16 | Rate of non-fatal accidents at workplace                                                   | Workers            | Health and safety                                | 1.81E+01 | 1.21E+01  | 2.35E+01 |
| I17 | Sector average wage, per month                                                             | Workers            | Fair salary                                      | 1.96E+01 | 2.93E+00  | 2.24E+01 |
| I18 | Trade union density                                                                        | Workers            | Freedom of association and collective bargaining | 2.39E+00 | -6.36E+00 | 2.68E+00 |
| I19 | Trafficking in persons                                                                     | Workers            | Forced labour                                    | 5.42E+00 | 2.28E+00  | 3.93E+00 |
| I20 | Violations of mandatory health and safety standards                                        | Workers            | Health and safety                                | 1.68E+00 | -1.28E+00 | 1.71E+00 |
| I21 | Weekly hours of work per employee female                                                   | Workers            | Working time                                     | 2.60E-01 | 6.00E-02  | 2.80E-01 |
| I22 | Weekly hours of work per employee male                                                     | Workers            | Working time                                     | 2.40E-01 | 4.00E-02  | 2.80E-01 |
| I23 | Women in the sectoral labour force                                                         | Workers            | Discrimination                                   | 1.57E+01 | 9.56E+00  | 2.04E+01 |
| I24 | Active involvement of enterprises in corruption and bribery                                | Value Chain Actors | Corruption                                       | 1.57E+00 | 1.30E-01  | 1.40E+00 |
| I25 | Presence of anti-competitive behaviour or violation of anti-trust and monopoly legislation | Value Chain Actors | Fair competition                                 | 1.03E+00 | -5.10E-01 | 7.70E-01 |
| I26 | Public sector corruption                                                                   | Value Chain Actors | Corruption                                       | 1.17E+00 | 2.80E-01  | 1.03E+00 |

|     |                                                |                    |                                      |          |           |          |
|-----|------------------------------------------------|--------------------|--------------------------------------|----------|-----------|----------|
| I27 | Social responsibility along the supply chain   | Value Chain Actors | Promoting social responsibility      | 4.83E+00 | -5.30E-01 | 3.01E+00 |
| I28 | Access to electricity                          | Society            | Technology development               | 3.00E-02 | 2.00E-02  | 4.00E-02 |
| I29 | Access to internet                             | Society            | Technology development               | 5.80E-01 | 3.90E-01  | 7.30E-01 |
| I30 | Animal protection                              | Society            | Ethical treatment of animals         | 2.08E+00 | 8.20E-01  | 2.36E+00 |
| I31 | Asylum seekers rate                            | Society            | Migration                            | 1.97E+00 | 1.26E+00  | 2.19E+00 |
| I32 | Biodiversity & Habitat                         | Society            | Nature                               | 1.28E+01 | 7.37E+00  | 1.73E+01 |
| I33 | Contribution to economic development           | Society            | Contribution to economic development | 5.30E-01 | 2.70E-01  | 6.60E-01 |
| I34 | Ecosystem services                             | Society            | Nature                               | 1.82E+01 | 8.38E+00  | 2.44E+01 |
| I35 | Embodied value added total                     | Society            | Contribution to economic development | 6.60E-01 | -8.40E-01 | 4.10E-01 |
| I36 | Emigration rate                                | Society            | Migration                            | 1.97E+00 | 2.57E+00  | 2.19E+00 |
| I37 | Female genital mutilation 15-49                | Society            | Gender equality and empowerment      | 1.30E-01 | -3.00E-02 | 1.20E-01 |
| I38 | Female with account at a financial institution | Society            | Gender equality and empowerment      | 7.80E-01 | -9.70E-01 | 6.00E-01 |
| I39 | Food insecurity                                | Society            | Poverty Alleviation                  | 7.00E-01 | 2.30E-01  | 9.80E-01 |
| I40 | Freedom of the press                           | Society            | Censorship and Oppression            | 4.77E+00 | 1.18E+00  | 3.07E+00 |
| I41 | Gender inequalities                            | Society            | Gender equality and empowerment      | 8.00E-01 | 1.50E-01  | 9.00E-01 |
| I42 | Global freedom scores                          | Society            | Access to immaterial resources       | 4.34E+00 | 1.40E+00  | 2.41E+00 |

|     |                                                    |         |                                        |          |           |          |
|-----|----------------------------------------------------|---------|----------------------------------------|----------|-----------|----------|
| I43 | Global Peace Index                                 | Society | Secure living condition                | 5.85E+00 | 6.00E-02  | 3.98E+00 |
| I44 | Global Terrorism Index                             | Society | Secure living conditions               | 1.65E+00 | -1.04E+00 | 1.73E+00 |
| I45 | Health expenditure, domestic general government    | Society | Health and safety                      | 1.90E-01 | -4.00E-02 | 1.90E-01 |
| I46 | Health expenditure, external resources             | Society | Health and safety                      | 4.00E-02 | 0.00E+00  | 5.00E-02 |
| I47 | Health expenditure, out-of-pocket                  | Society | Health and safety                      | 9.40E-01 | -6.00E-01 | 8.00E-01 |
| I48 | Health expenditure, total                          | Society | Health and safety                      | 1.10E+00 | -6.00E-02 | 1.37E+00 |
| I49 | Household air pollution attributable DALYs, female | Society | Health and safety                      | 1.50E-01 | 3.00E-02  | 1.60E-01 |
| I50 | Household air pollution attributable DALYs, male   | Society | Health and safety                      | 1.39E+00 | 5.90E-01  | 1.18E+00 |
| I51 | Illiteracy rate, female                            | Society | Education and upskilling opportunities | 1.01E+00 | 2.20E-01  | 1.35E+00 |
| I52 | Illiteracy rate, male                              | Society | Education and upskilling opportunities | 2.40E-01 | 1.20E-01  | 3.20E-01 |
| I53 | Illiteracy rate, total                             | Society | Education and upskilling opportunities | 9.20E-01 | 2.30E-01  | 1.27E+00 |
| I54 | Immigration rate                                   | Society | Migration                              | 2.01E+00 | 2.05E+00  | 2.22E+00 |
| I55 | Informal employment, female                        | Society | Contribution to economic development   | 1.08E+00 | 1.40E-01  | 1.38E+00 |
| I56 | Informal employment, male                          | Society | Contribution to economic development   | 1.97E+00 | 1.28E+00  | 2.59E+00 |

|     |                                             |         |                                        |          |           |          |
|-----|---------------------------------------------|---------|----------------------------------------|----------|-----------|----------|
| I57 | Informal employment, total                  | Society | Contribution to economic development   | 2.10E+00 | 1.08E+00  | 2.86E+00 |
| I58 | International Migrant Stock                 | Society | Migration                              | 2.85E+00 | 1.93E+00  | 2.80E+00 |
| I59 | International migrant workers in the sector | Society | Migration                              | 7.41E+00 | 4.79E+00  | 8.61E+00 |
| I60 | Internet freedom scores                     | Society | Censorship and Oppression              | 4.13E+00 | 1.69E+00  | 2.27E+00 |
| I61 | Labour productivity                         | Society | Contribution to economic development   | 1.50E-01 | 0.00E+00  | 1.80E-01 |
| I62 | Life expectancy at birth                    | Society | Health and safety                      | 2.31E+00 | 2.00E+00  | 3.07E+00 |
| I63 | Net migration rate                          | Society | Migration                              | 9.30E-01 | 8.80E-01  | 7.60E-01 |
| I64 | Number of threatened species                | Society | Nature                                 | 1.28E+01 | 8.82E+00  | 1.72E+01 |
| I65 | Political stability and absence of violence | Society | Governance                             | 4.51E+00 | 1.68E+00  | 2.65E+00 |
| I66 | Pollution level of the country              | Society | Safe and healthy living conditions     | 3.99E+00 | -1.53E+00 | 1.73E+00 |
| I67 | Population below national poverty line      | Society | Poverty alleviation                    | 2.25E+00 | 1.98E+00  | 3.06E+00 |
| I68 | Public expenditure on education             | Society | Education and upskilling opportunities | 7.10E-01 | -2.00E-02 | 6.00E-01 |
| I69 | R&D expenditures                            | Society | Technology development                 | 2.70E-01 | 1.00E-02  | 2.80E-01 |
| I70 | Rate of researchers                         | Society | Technology development                 | 5.30E-01 | 7.00E-02  | 6.50E-01 |
| I71 | Safe access to Drinking water coverage      | Society | Poverty Alleviation                    | 1.40E-01 | -2.00E-02 | 1.00E-01 |
| I72 | Sanitation coverage                         | Society | Poverty Alleviation                    | 1.07E+01 | 4.70E-01  | 7.40E+00 |

|     |                                               |                 |                                        |          |           |          |
|-----|-----------------------------------------------|-----------------|----------------------------------------|----------|-----------|----------|
| I73 | Social Protection Expenditures                | Society         | Secure living conditions               | 5.30E-01 | 4.20E-01  | 6.80E-01 |
| I74 | State of democracy                            | Society         | Governance                             | 6.70E-01 | 3.80E-01  | 7.40E-01 |
| I75 | Unemployment rate in the country              | Society         | Local employment                       | 1.12E+01 | 3.82E+00  | 1.16E+01 |
| I76 | Youth illiteracy rate, female                 | Society         | Education and upskilling opportunities | 1.30E-01 | -2.00E-02 | 1.30E-01 |
| I77 | Youth illiteracy rate, male                   | Society         | Education and upskilling opportunities | 3.90E-01 | 1.90E-01  | 4.90E-01 |
| I78 | Youth illiteracy rate, total                  | Society         | Education and upskilling opportunities | 3.80E-01 | 1.90E-01  | 4.80E-01 |
| I79 | Youth unemployment                            | Society         | Education and upskilling opportunities | 2.53E+00 | 1.68E+00  | 3.27E+00 |
| I80 | Certified environmental management systems    | Local Community | Access to material resources           | 4.57E+00 | -2.50E-01 | 2.56E+00 |
| I81 | Embodied agricultural area footprint          | Local Community | Environmental footprints               | 4.50E-01 | 4.50E-01  | 5.90E-01 |
| I82 | Embodied CO2 footprint                        | Local Community | GHG footprints                         | 4.56E+00 | -3.46E+00 | 3.49E+00 |
| I83 | Embodied CO2-eq footprint                     | Local Community | Environmental footprints               | 1.53E+01 | 1.04E+01  | 1.84E+01 |
| I84 | Embodied forest area footprint                | Local Community | Environmental footprints               | 0.00E+00 | 0.00E+00  | 0.00E+00 |
| I85 | Embodied water footprint                      | Local Community | Environmental footprints               | 1.93E+00 | 9.50E-01  | 1.62E+00 |
| I86 | Extraction of biomass (related to area)       | Local Community | Access to material resources           | 4.86E+00 | -5.90E-01 | 5.88E+00 |
| I87 | Extraction of biomass (related to population) | Local Community | Access to material resources           | 1.38E+01 | 2.16E+00  | 1.79E+01 |
| I88 | Extraction of fossil fuels                    | Local Community | Access to material resources           | 6.88E+00 | -3.86E+00 | 5.12E+00 |

|      |                                                                      |                 |                              |          |           |          |
|------|----------------------------------------------------------------------|-----------------|------------------------------|----------|-----------|----------|
| I89  | Extraction of industrial and construction minerals                   | Local Community | Access to material resources | 2.87E+00 | -6.84E+00 | 2.61E+00 |
| I90  | Extraction of ores                                                   | Local Community | Access to material resources | 6.00E+00 | 3.10E-01  | 4.17E+00 |
| I91  | Homicides                                                            | Local Community | Secure living condition      | 1.42E+01 | 9.00E+00  | 1.89E+01 |
| I92  | Indigenous People Rights Protection Index                            | Local Community | Respect of indigenous rights | 2.80E-01 | -2.00E-02 | 2.90E-01 |
| I93  | Internally displaced people                                          | Local Community | Secure living condition      | 1.56E+00 | -6.50E-01 | 1.73E+00 |
| I94  | Level of industrial water use (related to renewable water resources) | Local Community | Access to material resources | 4.79E+00 | -4.03E+00 | 5.46E+00 |
| I95  | Level of industrial water use (related to total withdrawal)          | Local Community | Access to material resources | 6.63E+00 | -2.52E+00 | 4.69E+00 |
| I96  | Presence of indigenous population                                    | Local Community | Respect of indigenous rights | 2.80E-01 | 8.00E-02  | 3.10E-01 |
| I97  | Waste management                                                     | Local Community | Access to material resources | 3.88E+00 | 1.21E+00  | 1.85E+00 |
| I98  | Data protection and privacy                                          | Consumer        | Consumer protection          | 2.70E-01 | -2.80E-01 | 2.10E-01 |
| I99  | Online Consumer Protection Legislation                               | Consumer        | Consumer protection          | 1.00E-01 | -1.80E-01 | 9.00E-02 |
| I100 | Child marriage, female                                               | Children        | Children welfare             | 2.16E+00 | 3.40E-01  | 2.95E+00 |
| I101 | Child marriage, male                                                 | Children        | Children welfare             | 1.60E-01 | -7.00E-02 | 2.10E-01 |
| I102 | Female genital mutilation 0-14                                       | Children        | Children welfare             | 7.00E-02 | 0.00E+00  | 8.00E-02 |
| I103 | Mean years of schooling, female                                      | Children        | Education                    | 7.40E-01 | 3.40E-01  | 9.30E-01 |
| I104 | Mean years of schooling, male                                        | Children        | Education                    | 7.40E-01 | 3.40E-01  | 9.30E-01 |
| I105 | Mean years of schooling, total                                       | Children        | Education                    | 8.60E-01 | 2.30E-01  | 1.15E+00 |

|      |                           |          |                   |          |          |          |
|------|---------------------------|----------|-------------------|----------|----------|----------|
| I106 | Under-five mortality rate | Children | Health and Safety | 3.20E-01 | 1.40E-01 | 4.10E-01 |
|------|---------------------------|----------|-------------------|----------|----------|----------|

### 13 Appendix 3 – Results of the social hotspots weighting method applied on S2.1, S2.1-SE and S5.1 for the production of electricity from gas fraction

|     | Name                                                      | Stakeholder | Subcategory                                      | S2.1     | S2.1-SE   | S5.1      |
|-----|-----------------------------------------------------------|-------------|--------------------------------------------------|----------|-----------|-----------|
| I1  | Children in employment, female                            | Workers     | Child labour                                     | 5.50E-01 | 4.00E-02  | 2.50E-01  |
| I2  | Children in employment, male                              | Workers     | Child labour                                     | 6.00E-01 | 0.00E+00  | 2.10E-01  |
| I3  | Children in employment, total                             | Workers     | Child labour                                     | 6.00E-01 | 0.00E+00  | 2.10E-01  |
| I4  | Evidence of violations of laws and employment regulations | Workers     | Social benefits, legal issues                    | 8.32E+00 | 1.76E+00  | 1.55E+01  |
| I5  | Freedom of association and collective bargaining          | Workers     | Freedom of association and collective bargaining | 2.06E+00 | -1.50E+00 | 3.00E+00  |
| I6  | Frequency of forced labour                                | Workers     | Forced labour                                    | 1.59E+00 | -4.53E+00 | -1.40E+01 |
| I7  | Gender wage gap                                           | Workers     | Discrimination                                   | 3.72E+00 | 4.50E+00  | 7.07E+00  |
| I8  | Goods produced by forced labour                           | Workers     | Forced labour                                    | 2.40E-01 | -6.00E-02 | 5.10E-01  |
| I9  | Living wage, per month                                    | Workers     | Fair salary                                      | 4.30E+00 | 7.20E-01  | 9.43E+00  |
| I10 | Men in the sectoral labour force                          | Workers     | Discrimination                                   | 1.80E-01 | 0.00E+00  | 3.30E-01  |
| I11 | Minimum wage, per month                                   | Workers     | Fair salary                                      | 6.00E-01 | 1.10E-01  | 9.10E-01  |

|     |                                                             |                    |                                                  |           |           |           |
|-----|-------------------------------------------------------------|--------------------|--------------------------------------------------|-----------|-----------|-----------|
| I12 | number of strikes                                           | Workers            | Freedom of association and collective bargaining | 6.33E+00  | 1.75E+00  | 7.52E+00  |
| I13 | Paid maternity leave                                        | Workers            | Social benefits, legal issues                    | 5.00E-02  | -7.90E-01 | -1.33E+00 |
| I14 | Presence of sufficient safety measures                      | Workers            | Health and safety                                | 3.10E-01  | 1.00E-02  | 4.50E-01  |
| I15 | Rate of fatal accidents at workplace                        | Workers            | Health and safety                                | 3.67E+00  | -1.88E+00 | 4.05E+00  |
| I16 | Rate of non-fatal accidents at workplace                    | Workers            | Health and safety                                | 1.23E+01  | 7.11E+00  | 2.35E+01  |
| I17 | Sector average wage, per month                              | Workers            | Fair salary                                      | 1.36E+01  | -5.40E-01 | 2.18E+01  |
| I18 | Trade union density                                         | Workers            | Freedom of association and collective bargaining | 1.96E+00  | -5.50E+00 | 3.81E+00  |
| I19 | Trafficking in persons                                      | Workers            | Forced labour                                    | -3.70E-01 | -3.06E+00 | -1.45E+01 |
| I20 | Violations of mandatory health and safety standards         | Workers            | Health and safety                                | 1.26E+00  | -1.27E+00 | 2.05E+00  |
| I21 | Weekly hours of work per employee female                    | Workers            | Working time                                     | 1.40E-01  | -2.00E-02 | 1.10E-01  |
| I22 | Weekly hours of work per employee male                      | Workers            | Working time                                     | 1.70E-01  | -1.00E-02 | 2.50E-01  |
| I23 | Women in the sectoral labour force                          | Workers            | Discrimination                                   | 9.95E+00  | 4.68E+00  | 1.58E+01  |
| I24 | Active involvement of enterprises in corruption and bribery | Value Chain Actors | Corruption                                       | 9.50E-01  | -2.80E-01 | 5.00E-02  |

|     |                                                                                            |                    |                                      |           |           |           |
|-----|--------------------------------------------------------------------------------------------|--------------------|--------------------------------------|-----------|-----------|-----------|
| I25 | Presence of anti-competitive behaviour or violation of anti-trust and monopoly legislation | Value Chain Actors | Fair competition                     | 4.40E-01  | -8.80E-01 | -5.70E-01 |
| I26 | Public sector corruption                                                                   | Value Chain Actors | Corruption                           | 5.10E-01  | -2.50E-01 | -6.50E-01 |
| I27 | Social responsibility along the supply chain                                               | Value Chain Actors | Promoting social responsibility      | 4.14E+00  | -4.40E-01 | 4.29E+00  |
| I28 | Access to electricity                                                                      | Society            | Technology development               | 2.00E-02  | 1.00E-02  | 3.00E-02  |
| I29 | Access to internet                                                                         | Society            | Technology development               | 4.80E-01  | 3.10E-01  | 7.80E-01  |
| I30 | Animal protection                                                                          | Society            | Ethical treatment of animals         | 1.01E+00  | -6.00E-02 | 4.40E-01  |
| I31 | Asylum seekers rate                                                                        | Society            | Migration                            | 1.67E+00  | 1.07E+00  | 3.07E+00  |
| I32 | Biodiversity & Habitat                                                                     | Society            | Nature                               | 7.81E+00  | 3.14E+00  | 1.25E+01  |
| I33 | Contribution to economic development                                                       | Society            | Contribution to economic development | 3.70E-01  | 1.40E-01  | 7.40E-01  |
| I34 | Ecosystem services                                                                         | Society            | Nature                               | 1.04E+01  | 2.04E+00  | 1.60E+01  |
| I35 | Embodied value added total                                                                 | Society            | Contribution to economic development | 5.40E-01  | -7.30E-01 | 5.30E-01  |
| I36 | Emigration rate                                                                            | Society            | Migration                            | 2.48E+00  | 2.99E+00  | 6.90E+00  |
| I37 | Female genital mutilation 15-49                                                            | Society            | Gender equality and empowerment      | 1.00E-01  | -3.00E-02 | 1.20E-01  |
| I38 | Female with account at a financial institution                                             | Society            | Gender equality and empowerment      | 7.20E-01  | -7.70E-01 | 1.07E+00  |
| I39 | Food insecurity                                                                            | Society            | Poverty Alleviation                  | 6.30E-01  | 2.30E-01  | 1.14E+00  |
| I40 | Freedom of the press                                                                       | Society            | Censorship and Oppression            | -6.40E-01 | -3.70E+00 | -1.48E+01 |

|     |                                                    |         |                                        |           |           |           |
|-----|----------------------------------------------------|---------|----------------------------------------|-----------|-----------|-----------|
| I41 | Gender inequalities                                | Society | Gender equality and empowerment        | 6.70E-01  | 1.10E-01  | 1.07E+00  |
| I42 | Global freedom scores                              | Society | Access to immaterial resources         | -1.05E+00 | -3.55E+00 | -1.57E+01 |
| I43 | Global Peace Index                                 | Society | Secure living condition                | 1.90E-01  | -4.75E+00 | -1.34E+01 |
| I44 | Global Terrorism Index                             | Society | Secure living conditions               | 1.15E+00  | -1.14E+00 | 1.34E+00  |
| I45 | Health expenditure, domestic general government    | Society | Health and safety                      | 2.60E-01  | 6.00E-02  | 6.70E-01  |
| I46 | Health expenditure, external resources             | Society | Health and safety                      | 3.00E-02  | 0.00E+00  | 5.00E-02  |
| I47 | Health expenditure, out-of-pocket                  | Society | Health and safety                      | 8.50E-01  | -4.60E-01 | 1.12E+00  |
| I48 | Health expenditure, total                          | Society | Health and safety                      | 8.50E-01  | -1.40E-01 | 1.40E+00  |
| I49 | Household air pollution attributable DALYs, female | Society | Health and safety                      | 1.40E-01  | 3.00E-02  | 2.10E-01  |
| I50 | Household air pollution attributable DALYs, male   | Society | Health and safety                      | 6.90E-01  | 1.00E-02  | -4.90E-01 |
| I51 | Illiteracy rate, female                            | Society | Education and upskilling opportunities | 8.70E-01  | 1.90E-01  | 1.55E+00  |
| I52 | Illiteracy rate, male                              | Society | Education and upskilling opportunities | 1.70E-01  | 7.00E-02  | 3.10E-01  |
| I53 | Illiteracy rate, total                             | Society | Education and upskilling opportunities | 7.80E-01  | 1.90E-01  | 1.42E+00  |
| I54 | Immigration rate                                   | Society | Migration                              | 2.51E+00  | 2.55E+00  | 6.95E+00  |

|     |                                             |         |                                        |           |           |           |
|-----|---------------------------------------------|---------|----------------------------------------|-----------|-----------|-----------|
| I55 | Informal employment, female                 | Society | Contribution to economic development   | 9.40E-01  | 1.40E-01  | 1.69E+00  |
| I56 | Informal employment, male                   | Society | Contribution to economic development   | 1.37E+00  | 7.80E-01  | 2.31E+00  |
| I57 | Informal employment, total                  | Society | Contribution to economic development   | 1.53E+00  | 6.60E-01  | 2.75E+00  |
| I58 | International Migrant Stock                 | Society | Migration                              | 2.61E+00  | 1.82E+00  | 5.32E+00  |
| I59 | International migrant workers in the sector | Society | Migration                              | 5.43E+00  | 3.20E+00  | 1.04E+01  |
| I60 | Internet freedom scores                     | Society | Censorship and Oppression              | -1.23E+00 | -3.31E+00 | -1.59E+01 |
| I61 | Labour productivity                         | Society | Contribution to economic development   | 1.20E-01  | -1.00E-02 | 2.10E-01  |
| I62 | Life expectancy at birth                    | Society | Health and safety                      | 1.50E+00  | 1.24E+00  | 2.42E+00  |
| I63 | Net migration rate                          | Society | Migration                              | 1.55E+00  | 1.50E+00  | 4.88E+00  |
| I64 | Number of threatened species                | Society | Nature                                 | 8.01E+00  | 4.60E+00  | 1.32E+01  |
| I65 | Political stability and absence of violence | Society | Governance                             | -9.90E-01 | -3.40E+00 | -1.57E+01 |
| I66 | Pollution level of the country              | Society | Safe and healthy living conditions     | 3.78E+00  | -9.20E-01 | 3.90E+00  |
| I67 | Population below national poverty line      | Society | Poverty alleviation                    | 1.49E+00  | 1.26E+00  | 2.61E+00  |
| I68 | Public expenditure on education             | Society | Education and upskilling opportunities | 1.10E-01  | -5.10E-01 | -1.07E+00 |

|     |                                            |                 |                                        |           |           |           |
|-----|--------------------------------------------|-----------------|----------------------------------------|-----------|-----------|-----------|
| I69 | R&D expenditures                           | Society         | Technology development                 | 2.10E-01  | -1.00E-02 | 3.20E-01  |
| I70 | Rate of researchers                        | Society         | Technology development                 | 4.10E-01  | 1.00E-02  | 7.50E-01  |
| I71 | Safe access to Drinking water coverage     | Society         | Poverty Alleviation                    | 9.00E-02  | -5.00E-02 | 0.00E+00  |
| I72 | Sanitation coverage                        | Society         | Poverty Alleviation                    | 4.57E+00  | -4.18E+00 | -8.02E+00 |
| I73 | Social Protection Expenditures             | Society         | Secure living conditions               | 4.40E-01  | 3.40E-01  | 7.30E-01  |
| I74 | State of democracy                         | Society         | Governance                             | 5.60E-01  | 3.10E-01  | 8.30E-01  |
| I75 | Unemployment rate in the country           | Society         | Local employment                       | 7.86E+00  | 1.54E+00  | 1.08E+01  |
| I76 | Youth illiteracy rate, female              | Society         | Education and upskilling opportunities | 1.20E-01  | 0.00E+00  | 2.00E-01  |
| I77 | Youth illiteracy rate, male                | Society         | Education and upskilling opportunities | 2.80E-01  | 1.10E-01  | 4.60E-01  |
| I78 | Youth illiteracy rate, total               | Society         | Education and upskilling opportunities | 2.80E-01  | 1.20E-01  | 4.80E-01  |
| I79 | Youth unemployment                         | Society         | Education and upskilling opportunities | 1.75E+00  | 1.02E+00  | 2.99E+00  |
| I80 | Certified environmental management systems | Local Community | Access to material resources           | -1.03E+00 | -5.14E+00 | -1.59E+01 |
| I81 | Embodied agricultural area footprint       | Local Community | Environmental footprints               | 3.50E-01  | 3.50E-01  | 5.70E-01  |
| I82 | Embodied CO2 footprint                     | Local Community | GHG footprints                         | -9.00E-01 | -7.74E+00 | -1.42E+01 |
| I83 | Embodied CO2-eq footprint                  | Local Community | Environmental footprints               | 5.70E+00  | 1.48E+00  | -2.57E+00 |
| I84 | Embodied forest area footprint             | Local Community | Environmental footprints               | 0.00E+00  | 0.00E+00  | 0.00E+00  |

|      |                                                                      |                 |                              |           |           |           |
|------|----------------------------------------------------------------------|-----------------|------------------------------|-----------|-----------|-----------|
| I85  | Embodied water footprint                                             | Local Community | Environmental footprints     | 2.06E+00  | 1.22E+00  | 4.42E+00  |
| I86  | Extraction of biomass (related to area)                              | Local Community | Access to material resources | 3.82E+00  | -8.20E-01 | 6.97E+00  |
| I87  | Extraction of biomass (related to population)                        | Local Community | Access to material resources | 8.26E+00  | -1.69E+00 | 1.22E+01  |
| I88  | Extraction of fossil fuels                                           | Local Community | Access to material resources | 4.90E-01  | -8.66E+00 | -1.40E+01 |
| I89  | Extraction of industrial and construction minerals                   | Local Community | Access to material resources | 1.83E+00  | -6.45E+00 | 1.57E+00  |
| I90  | Extraction of ores                                                   | Local Community | Access to material resources | 4.42E+00  | -4.30E-01 | 3.18E+00  |
| I91  | Homicides                                                            | Local Community | Secure living condition      | 8.79E+00  | 4.37E+00  | 1.45E+01  |
| I92  | Indigenous People Rights Protection Index                            | Local Community | Respect of indigenous rights | 1.40E-01  | -1.10E-01 | 4.00E-02  |
| I93  | Internally displaced people                                          | Local Community | Secure living condition      | 1.43E+00  | -4.60E-01 | 2.85E+00  |
| I94  | Level of industrial water use (related to renewable water resources) | Local Community | Access to material resources | 3.51E+00  | -4.01E+00 | 5.61E+00  |
| I95  | Level of industrial water use (related to total withdrawal)          | Local Community | Access to material resources | 1.53E+00  | -6.27E+00 | -9.06E+00 |
| I96  | Presence of indigenous population                                    | Local Community | Respect of indigenous rights | 1.50E-01  | -2.00E-02 | 1.10E-01  |
| I97  | Waste management                                                     | Local Community | Access to material resources | -1.49E+00 | -3.77E+00 | -1.66E+01 |
| I98  | Data protection and privacy                                          | Consumer        | Consumer protection          | 2.40E-01  | -2.30E-01 | 3.50E-01  |
| I99  | Online Consumer Protection Legislation                               | Consumer        | Consumer protection          | 8.00E-02  | -1.50E-01 | 1.30E-01  |
| I100 | Child marriage, female                                               | Children        | Children welfare             | 1.38E+00  | -1.70E-01 | 2.42E+00  |

|      |                                 |          |                   |          |           |          |
|------|---------------------------------|----------|-------------------|----------|-----------|----------|
| I101 | Child marriage, male            | Children | Children welfare  | 1.10E-01 | -9.00E-02 | 2.00E-01 |
| I102 | Female genital mutilation 0-14  | Children | Children welfare  | 5.00E-02 | -1.00E-02 | 7.00E-02 |
| I103 | Mean years of schooling, female | Children | Education         | 6.00E-01 | 2.60E-01  | 1.07E+00 |
| I104 | Mean years of schooling, male   | Children | Education         | 6.00E-01 | 2.60E-01  | 1.07E+00 |
| I105 | Mean years of schooling, total  | Children | Education         | 7.50E-01 | 2.10E-01  | 1.35E+00 |
| I106 | Under-five mortality rate       | Children | Health and Safety | 2.40E-01 | 9.00E-02  | 4.10E-01 |

## 14 Appendix 4 – Results of the social hotspots weighting method applied on S2.1, S2.1-SE and S5.1 for the production of biochar

|     | Name                                                      | Stakeholder | Subcategory                                      | S2.1     | S2.1-SE  | S5.1     |
|-----|-----------------------------------------------------------|-------------|--------------------------------------------------|----------|----------|----------|
| I1  | Children in employment, female                            | Workers     | Child labour                                     | 5.91E+00 | 5.30E+00 | 5.47E+00 |
| I2  | Children in employment, male                              | Workers     | Child labour                                     | 6.16E+00 | 5.45E+00 | 5.69E+00 |
| I3  | Children in employment, total                             | Workers     | Child labour                                     | 6.16E+00 | 5.45E+00 | 5.69E+00 |
| I4  | Evidence of violations of laws and employment regulations | Workers     | Social benefits, legal issues                    | 4.82E+01 | 4.05E+01 | 5.10E+01 |
| I5  | Freedom of association and collective bargaining          | Workers     | Freedom of association and collective bargaining | 8.18E+00 | 4.01E+00 | 7.91E+00 |
| I6  | Frequency of forced labour                                | Workers     | Forced labour                                    | 1.23E+01 | 5.18E+00 | 7.65E+00 |
| I7  | Gender wage gap                                           | Workers     | Discrimination                                   | 1.64E+01 | 1.73E+01 | 1.66E+01 |
| I8  | Goods produced by forced labour                           | Workers     | Forced labour                                    | 6.98E-01 | 3.49E-01 | 6.61E-01 |
| I9  | Living wage, per month                                    | Workers     | Fair salary                                      | 1.62E+01 | 1.20E+01 | 1.62E+01 |
| I10 | Men in the sectoral labour force                          | Workers     | Discrimination                                   | 4.74E-01 | 2.68E-01 | 4.22E-01 |
| I11 | Minimum wage, per month                                   | Workers     | Fair salary                                      | 5.58E+00 | 5.01E+00 | 5.28E+00 |

|     |                                                                                            |                    |                                                  |          |           |          |
|-----|--------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------|----------|-----------|----------|
| I12 | number of strikes                                                                          | Workers            | Freedom of association and collective bargaining | 2.06E+01 | 1.53E+01  | 1.84E+01 |
| I13 | Paid maternity leave                                                                       | Workers            | Social benefits, legal issues                    | 1.58E+00 | 5.93E-01  | 1.34E+00 |
| I14 | Presence of sufficient safety measures                                                     | Workers            | Health and safety                                | 1.13E+00 | 7.81E-01  | 1.00E+00 |
| I15 | Rate of fatal accidents at workplace                                                       | Workers            | Health and safety                                | 1.80E+01 | 1.15E+01  | 1.76E+01 |
| I16 | Rate of non-fatal accidents at workplace                                                   | Workers            | Health and safety                                | 6.15E+01 | 5.54E+01  | 6.38E+01 |
| I17 | Sector average wage, per month                                                             | Workers            | Fair salary                                      | 6.12E+01 | 4.46E+01  | 6.11E+01 |
| I18 | Trade union density                                                                        | Workers            | Freedom of association and collective bargaining | 7.19E+00 | -1.54E+00 | 7.11E+00 |
| I19 | Trafficking in persons                                                                     | Workers            | Forced labour                                    | 1.68E+01 | 1.37E+01  | 1.46E+01 |
| I20 | Violations of mandatory health and safety standards                                        | Workers            | Health and safety                                | 4.50E+00 | 1.54E+00  | 4.25E+00 |
| I21 | Weekly hours of work per employee female                                                   | Workers            | Working time                                     | 8.10E-01 | 6.14E-01  | 7.88E-01 |
| I22 | Weekly hours of work per employee male                                                     | Workers            | Working time                                     | 7.64E-01 | 5.62E-01  | 7.63E-01 |
| I23 | Women in the sectoral labour force                                                         | Workers            | Discrimination                                   | 6.16E+01 | 5.54E+01  | 6.40E+01 |
| I24 | Active involvement of enterprises in corruption and bribery                                | Value Chain Actors | Corruption                                       | 7.03E+00 | 5.59E+00  | 6.29E+00 |
| I25 | Presence of anti-competitive behaviour or violation of anti-trust and monopoly legislation | Value Chain Actors | Fair competition                                 | 2.63E+00 | 1.09E+00  | 2.29E+00 |

|     |                                                |                    |                                      |          |           |          |
|-----|------------------------------------------------|--------------------|--------------------------------------|----------|-----------|----------|
| I26 | Public sector corruption                       | Value Chain Actors | Corruption                           | 6.47E+00 | 5.58E+00  | 5.92E+00 |
| I27 | Social responsibility along the supply chain   | Value Chain Actors | Promoting social responsibility      | 1.11E+01 | 5.75E+00  | 8.89E+00 |
| I28 | Access to electricity                          | Society            | Technology development               | 1.34E-01 | 1.27E-01  | 1.35E-01 |
| I29 | Access to internet                             | Society            | Technology development               | 5.22E+00 | 5.03E+00  | 4.99E+00 |
| I30 | Animal protection                              | Society            | Ethical treatment of animals         | 7.04E+00 | 5.78E+00  | 7.09E+00 |
| I31 | Asylum seekers rate                            | Society            | Migration                            | 7.03E+00 | 6.32E+00  | 7.02E+00 |
| I32 | Biodiversity & Habitat                         | Society            | Nature                               | 4.96E+01 | 4.41E+01  | 5.24E+01 |
| I33 | Contribution to economic development           | Society            | Contribution to economic development | 1.34E+00 | 1.08E+00  | 1.31E+00 |
| I34 | Ecosystem services                             | Society            | Nature                               | 6.37E+01 | 5.39E+01  | 6.69E+01 |
| I35 | Embodied value added total                     | Society            | Contribution to economic development | 1.48E+00 | -1.28E-02 | 1.18E+00 |
| I36 | Emigration rate                                | Society            | Migration                            | 7.03E+00 | 7.63E+00  | 7.02E+00 |
| I37 | Female genital mutilation 15-49                | Society            | Gender equality and empowerment      | 3.66E-01 | 2.12E-01  | 3.40E-01 |
| I38 | Female with account at a financial institution | Society            | Gender equality and empowerment      | 2.06E+00 | 3.09E-01  | 1.81E+00 |
| I39 | Food insecurity                                | Society            | Poverty Alleviation                  | 5.41E+00 | 4.95E+00  | 5.19E+00 |
| I40 | Freedom of the press                           | Society            | Censorship and Oppression            | 1.38E+01 | 1.02E+01  | 1.13E+01 |
| I41 | Gender inequalities                            | Society            | Gender equality and empowerment      | 5.82E+00 | 5.16E+00  | 5.52E+00 |
| I42 | Global freedom scores                          | Society            | Access to immaterial resources       | 1.24E+01 | 9.52E+00  | 9.96E+00 |

|     |                                                    |         |                                        |          |          |          |
|-----|----------------------------------------------------|---------|----------------------------------------|----------|----------|----------|
| I43 | Global Peace Index                                 | Society | Secure living condition                | 1.71E+01 | 1.13E+01 | 1.45E+01 |
| I44 | Global Terrorism Index                             | Society | Secure living conditions               | 4.93E+00 | 2.25E+00 | 4.67E+00 |
| I45 | Health expenditure, domestic general government    | Society | Health and safety                      | 5.39E-01 | 3.08E-01 | 5.07E-01 |
| I46 | Health expenditure, external resources             | Society | Health and safety                      | 1.26E-01 | 8.90E-02 | 1.27E-01 |
| I47 | Health expenditure, out-of-pocket                  | Society | Health and safety                      | 2.06E+00 | 5.16E-01 | 1.72E+00 |
| I48 | Health expenditure, total                          | Society | Health and safety                      | 3.50E+00 | 2.34E+00 | 3.54E+00 |
| I49 | Household air pollution attributable DALYs, female | Society | Health and safety                      | 7.52E-01 | 6.27E-01 | 7.04E-01 |
| I50 | Household air pollution attributable DALYs, male   | Society | Health and safety                      | 6.94E+00 | 6.14E+00 | 6.30E+00 |
| I51 | Illiteracy rate, female                            | Society | Education and upskilling opportunities | 6.50E+00 | 5.71E+00 | 6.30E+00 |
| I52 | Illiteracy rate, male                              | Society | Education and upskilling opportunities | 8.72E-01 | 7.54E-01 | 9.16E-01 |
| I53 | Illiteracy rate, total                             | Society | Education and upskilling opportunities | 6.26E+00 | 5.57E+00 | 6.08E+00 |
| I54 | Immigration rate                                   | Society | Migration                              | 7.14E+00 | 7.18E+00 | 7.11E+00 |
| I55 | Informal employment, female                        | Society | Contribution to economic development   | 6.64E+00 | 5.70E+00 | 6.40E+00 |
| I56 | Informal employment, male                          | Society | Contribution to economic development   | 1.06E+01 | 9.93E+00 | 1.07E+01 |

|     |                                             |         |                                        |          |          |          |
|-----|---------------------------------------------|---------|----------------------------------------|----------|----------|----------|
| I57 | Informal employment, total                  | Society | Contribution to economic development   | 1.09E+01 | 9.84E+00 | 1.10E+01 |
| I58 | International Migrant Stock                 | Society | Migration                              | 9.18E+00 | 8.26E+00 | 8.84E+00 |
| I59 | International migrant workers in the sector | Society | Migration                              | 1.97E+01 | 1.71E+01 | 1.92E+01 |
| I60 | Internet freedom scores                     | Society | Censorship and Oppression              | 1.20E+01 | 9.53E+00 | 9.57E+00 |
| I61 | Labour productivity                         | Society | Contribution to economic development   | 7.94E-01 | 6.40E-01 | 7.66E-01 |
| I62 | Life expectancy at birth                    | Society | Health and safety                      | 1.20E+01 | 1.17E+01 | 1.22E+01 |
| I63 | Net migration rate                          | Society | Migration                              | 2.50E+00 | 2.44E+00 | 2.25E+00 |
| I64 | Number of threatened species                | Society | Nature                                 | 5.10E+01 | 4.70E+01 | 5.40E+01 |
| I65 | Political stability and absence of violence | Society | Governance                             | 1.31E+01 | 1.02E+01 | 1.06E+01 |
| I66 | Pollution level of the country              | Society | Safe and healthy living conditions     | 7.11E+00 | 1.61E+00 | 4.58E+00 |
| I67 | Population below national poverty line      | Society | Poverty alleviation                    | 1.20E+01 | 1.17E+01 | 1.22E+01 |
| I68 | Public expenditure on education             | Society | Education and upskilling opportunities | 1.91E+00 | 1.18E+00 | 1.72E+00 |
| I69 | R&D expenditures                            | Society | Technology development                 | 8.60E-01 | 6.06E-01 | 8.43E-01 |
| I70 | Rate of researchers                         | Society | Technology development                 | 1.85E+00 | 1.39E+00 | 1.90E+00 |
| I71 | Safe access to Drinking water coverage      | Society | Poverty Alleviation                    | 3.44E-01 | 1.79E-01 | 2.86E-01 |
| I72 | Sanitation coverage                         | Society | Poverty Alleviation                    | 2.83E+01 | 1.81E+01 | 2.38E+01 |

|     |                                               |                 |                                        |          |          |          |
|-----|-----------------------------------------------|-----------------|----------------------------------------|----------|----------|----------|
| I73 | Social Protection Expenditures                | Society         | Secure living conditions               | 5.08E+00 | 4.96E+00 | 4.85E+00 |
| I74 | State of democracy                            | Society         | Governance                             | 5.39E+00 | 5.10E+00 | 5.10E+00 |
| I75 | Unemployment rate in the country              | Society         | Local employment                       | 2.83E+01 | 2.09E+01 | 2.65E+01 |
| I76 | Youth illiteracy rate, female                 | Society         | Education and upskilling opportunities | 3.45E-01 | 1.98E-01 | 3.23E-01 |
| I77 | Youth illiteracy rate, male                   | Society         | Education and upskilling opportunities | 1.37E+00 | 1.18E+00 | 1.41E+00 |
| I78 | Youth illiteracy rate, total                  | Society         | Education and upskilling opportunities | 1.36E+00 | 1.17E+00 | 1.40E+00 |
| I79 | Youth unemployment                            | Society         | Education and upskilling opportunities | 1.27E+01 | 1.18E+01 | 1.28E+01 |
| I80 | Certified environmental management systems    | Local Community | Access to material resources           | 1.01E+01 | 5.33E+00 | 7.83E+00 |
| I81 | Embodied agricultural area footprint          | Local Community | Environmental footprints               | 4.85E+00 | 4.84E+00 | 4.62E+00 |
| I82 | Embodied CO2 footprint                        | Local Community | GHG footprints                         | 1.14E+01 | 3.42E+00 | 9.93E+00 |
| I83 | Embodied CO2-eq footprint                     | Local Community | Environmental footprints               | 5.45E+01 | 4.95E+01 | 5.59E+01 |
| I84 | Embodied forest area footprint                | Local Community | Environmental footprints               | 5.90E-04 | 1.20E-04 | 5.57E-04 |
| I85 | Embodied water footprint                      | Local Community | Environmental footprints               | 8.38E+00 | 7.40E+00 | 7.59E+00 |
| I86 | Extraction of biomass (related to area)       | Local Community | Access to material resources           | 1.73E+01 | 1.18E+01 | 1.76E+01 |
| I87 | Extraction of biomass (related to population) | Local Community | Access to material resources           | 5.15E+01 | 3.99E+01 | 5.39E+01 |
| I88 | Extraction of fossil fuels                    | Local Community | Access to material resources           | 1.78E+01 | 7.03E+00 | 1.55E+01 |

|      |                                                                      |                 |                              |          |           |          |
|------|----------------------------------------------------------------------|-----------------|------------------------------|----------|-----------|----------|
| I89  | Extraction of industrial and construction minerals                   | Local Community | Access to material resources | 8.34E+00 | -1.35E+00 | 7.81E+00 |
| I90  | Extraction of ores                                                   | Local Community | Access to material resources | 1.44E+01 | 8.72E+00  | 1.21E+01 |
| I91  | Homicides                                                            | Local Community | Secure living condition      | 5.50E+01 | 4.99E+01  | 5.81E+01 |
| I92  | Indigenous People Rights Protection Index                            | Local Community | Respect of indigenous rights | 8.84E-01 | 5.83E-01  | 8.58E-01 |
| I93  | Internally displaced people                                          | Local Community | Secure living condition      | 8.18E+00 | 5.97E+00  | 7.84E+00 |
| I94  | Level of industrial water use (related to renewable water resources) | Local Community | Access to material resources | 1.71E+01 | 8.32E+00  | 1.72E+01 |
| I95  | Level of industrial water use (related to total withdrawal)          | Local Community | Access to material resources | 1.69E+01 | 7.74E+00  | 1.45E+01 |
| I96  | Presence of indigenous population                                    | Local Community | Respect of indigenous rights | 8.58E-01 | 6.52E-01  | 8.43E-01 |
| I97  | Waste management                                                     | Local Community | Access to material resources | 7.70E+00 | 5.03E+00  | 5.48E+00 |
| I98  | Data protection and privacy                                          | Consumer        | Consumer protection          | 7.12E-01 | 1.64E-01  | 6.36E-01 |
| I99  | Online Consumer Protection Legislation                               | Consumer        | Consumer protection          | 2.86E-01 | 9.91E-03  | 2.69E-01 |
| I100 | Child marriage, female                                               | Children        | Children welfare             | 8.80E+00 | 6.99E+00  | 9.30E+00 |
| I101 | Child marriage, male                                                 | Children        | Children welfare             | 6.08E-01 | 3.75E-01  | 6.40E-01 |
| I102 | Female genital mutilation 0-14                                       | Children        | Children welfare             | 2.27E-01 | 1.55E-01  | 2.22E-01 |
| I103 | Mean years of schooling, female                                      | Children        | Education                    | 5.79E+00 | 5.40E+00  | 5.58E+00 |
| I104 | Mean years of schooling, male                                        | Children        | Education                    | 5.79E+00 | 5.40E+00  | 5.58E+00 |
| I105 | Mean years of schooling, total                                       | Children        | Education                    | 5.93E+00 | 5.31E+00  | 5.71E+00 |

|      |                           |          |                   |          |          |          |
|------|---------------------------|----------|-------------------|----------|----------|----------|
| I106 | Under-five mortality rate | Children | Health and Safety | 1.46E+00 | 1.28E+00 | 1.47E+00 |
|------|---------------------------|----------|-------------------|----------|----------|----------|

## 15 Appendix 5 – Results of the relative contributions of process stages to the social hotspots in S2.1

|     | Impact category (results in med risk hours)               | Other Bioliquid Processing requirements | Feedstock Production | HDO (R-104) - energy requirements | Overall replacement | Pyrolysis | Indicator scope |
|-----|-----------------------------------------------------------|-----------------------------------------|----------------------|-----------------------------------|---------------------|-----------|-----------------|
| I1  | Children in employment, female                            | 5.20E-04                                | 3.41E-01             | 5.58E-02                          | 8.51E-07            | 6.78E-01  | Sector level    |
| I2  | Children in employment, male                              | 6.20E-04                                | 4.04E-01             | 7.03E-02                          | 8.51E-07            | 7.23E-01  | Sector level    |
| I3  | Children in employment, total                             | 6.20E-04                                | 4.04E-01             | 7.03E-02                          | 8.51E-07            | 7.23E-01  | Sector level    |
| I4  | Evidence of violations of laws and employment regulations | 6.18E-03                                | 9.73E-01             | 3.53E+00                          | 8.51E-05            | 1.08E+01  | Sector level    |
| I5  | Freedom of association and collective bargaining          | 6.54E-03                                | 1.03E+00             | 5.37E-01                          | 8.51E-07            | 1.67E+00  |                 |
| I6  | Frequency of forced labour                                | 1.07E-02                                | 6.53E+00             | 4.99E-01                          | 8.51E-07            | 1.61E+00  | Country level   |
| I7  | Gender wage gap                                           | 1.26E+00                                | 1.17E+00             | 1.14E+00                          | 8.51E-03            | 3.47E+00  | Sector level    |
| I8  | Goods produced by forced labour                           | 1.68E-03                                | 1.03E-01             | 4.43E-02                          | 8.51E-06            | 1.39E-01  | Sector level    |
| I9  | Living wage, per month                                    | 1.29E-01                                | 1.44E+00             | 7.40E-01                          | 8.50E-04            | 3.42E+00  | Country level   |
| I10 | Men in the sectoral labour force                          | 1.49E-03                                | 1.02E-01             | 2.82E-02                          | 8.51E-06            | 8.91E-02  | Sector level    |
| I11 | Minimum wage, per month                                   | 4.20E-04                                | 1.58E-01             | 4.50E-02                          | 8.51E-07            | 6.36E-01  | Country level   |
| I12 | number of strikes                                         | 1.27E+00                                | 4.33E+00             | 8.72E-01                          | 8.51E-03            | 3.85E+00  | Sector level    |
| I13 | Paid maternity leave                                      | 1.32E-02                                | 4.16E-01             | 5.36E-02                          | 8.51E-05            | 2.81E-01  | Country level   |

|     |                                                                                            |          |          |          |          |          |               |
|-----|--------------------------------------------------------------------------------------------|----------|----------|----------|----------|----------|---------------|
| I14 | Presence of sufficient safety measures                                                     | 1.26E-02 | 1.82E-01 | 3.44E-02 | 8.51E-06 | 1.64E-01 | Sector level  |
| I15 | Rate of fatal accidents at workplace                                                       | 1.36E-01 | 2.02E+00 | 1.17E+00 | 8.50E-04 | 3.66E+00 | Sector level  |
| I16 | Rate of non-fatal accidents at workplace                                                   | 1.27E+00 | 2.61E+00 | 4.36E+00 | 8.51E-03 | 1.34E+01 | Sector level  |
| I17 | Sector average wage, per month                                                             | 1.27E+00 | 5.42E+00 | 3.82E+00 | 8.51E-03 | 1.29E+01 | Sector level  |
| I18 | Trade union density                                                                        | 1.31E-01 | 7.28E-01 | 4.82E-01 | 8.50E-04 | 1.50E+00 | Country level |
| I19 | Trafficking in persons                                                                     | 6.60E-03 | 3.32E+00 | 6.82E-01 | 8.51E-06 | 2.61E+00 | Country level |
| I20 | Violations of mandatory health and safety standards                                        | 1.29E-01 | 6.81E-01 | 2.80E-01 | 8.50E-04 | 8.93E-01 | Country level |
| I21 | Weekly hours of work per employee female                                                   | 1.28E-02 | 8.93E-02 | 4.72E-02 | 8.51E-05 | 1.61E-01 | Sector level  |
| I22 | Weekly hours of work per employee male                                                     | 1.28E-02 | 6.15E-02 | 4.55E-02 | 8.51E-05 | 1.56E-01 | Sector level  |
| I23 | Women in the sectoral labour force                                                         | 1.34E-01 | 1.92E+00 | 4.07E+00 | 8.50E-04 | 1.30E+01 | Sector level  |
| I24 | Active involvement of enterprises in corruption and bribery                                | 1.41E-02 | 7.92E-01 | 1.11E-01 | 0.00E+00 | 8.50E-01 | Sector level  |
| I25 | Presence of anti-competitive behaviour or violation of anti-trust and monopoly legislation | 2.98E-03 | 6.28E-01 | 1.55E-01 | 8.51E-06 | 4.83E-01 | Sector level  |
| I26 | Public sector corruption                                                                   | 2.05E-03 | 5.22E-01 | 8.87E-02 | 8.51E-06 | 7.73E-01 | Country level |
| I27 | Social responsibility along the supply chain                                               | 7.02E-03 | 3.48E+00 | 5.66E-01 | 8.51E-07 | 1.83E+00 | Sector level  |
| I28 | Access to electricity                                                                      | 1.40E-04 | 3.56E-03 | 6.04E-03 | 8.51E-07 | 2.37E-02 | Country level |

|     |                                                 |          |          |          |          |          |               |
|-----|-------------------------------------------------|----------|----------|----------|----------|----------|---------------|
| I29 | Access to internet                              | 2.90E-04 | 4.71E-02 | 2.52E-02 | 8.51E-07 | 5.74E-01 | Country level |
| I30 | Animal protection                               | 1.43E-02 | 5.45E-01 | 4.85E-01 | 8.51E-05 | 1.50E+00 | Country level |
| I31 | Asylum seekers rate                             | 1.27E-01 | 6.22E-01 | 1.10E-01 | 8.50E-04 | 1.48E+00 | Country level |
| I32 | Biodiversity & Habitat                          | 6.64E-03 | 1.01E+00 | 3.63E+00 | 8.51E-07 | 1.11E+01 | Country level |
| I33 | Contribution to economic development            | 1.26E-01 | 1.40E-01 | 4.85E-02 | 8.50E-04 | 2.68E-01 | Sector level  |
| I34 | Ecosystem services                              | 1.27E+00 | 1.90E+00 | 4.58E+00 | 8.51E-03 | 1.41E+01 | Country level |
| I35 | Embodied value added total                      | 2.62E-03 | 4.76E-01 | 7.82E-02 | 8.51E-05 | 2.49E-01 | Sector level  |
| I36 | Emigration rate                                 | 1.27E-01 | 6.27E-01 | 1.10E-01 | 8.50E-04 | 1.48E+00 | Country level |
| I37 | Female genital mutilation 15-49                 | 1.40E-03 | 6.15E-02 | 2.22E-02 | 8.51E-06 | 7.14E-02 | Country level |
| I38 | Female with account at a financial institution  | 2.31E-03 | 4.72E-01 | 8.51E-02 | 8.51E-06 | 3.82E-01 | Country level |
| I39 | Food insecurity                                 | 3.80E-04 | 4.58E-02 | 3.92E-02 | 0.00E+00 | 6.18E-01 | Country level |
| I40 | Freedom of the press                            | 6.97E-03 | 3.33E+00 | 4.54E-01 | 8.51E-06 | 1.92E+00 | Country level |
| I41 | Gender inequalities                             | 4.90E-04 | 1.74E-01 | 6.18E-02 | 8.51E-07 | 6.87E-01 | Country level |
| I42 | Global freedom scores                           | 5.06E-03 | 3.29E+00 | 3.58E-01 | 8.51E-07 | 1.62E+00 | Country level |
| I43 | Global Peace Index                              | 8.84E-03 | 3.84E+00 | 6.69E-01 | 8.51E-07 | 2.59E+00 | Country level |
| I44 | Global Terrorism Index                          | 6.12E-03 | 6.62E-01 | 2.83E-01 | 8.51E-06 | 9.39E-01 | Country level |
| I45 | Health expenditure, domestic general government | 1.48E-03 | 8.44E-02 | 3.42E-02 | 8.51E-06 | 1.07E-01 | Country level |
| I46 | Health expenditure, external resources          | 1.29E-03 | 9.57E-03 | 7.93E-03 | 8.51E-06 | 2.62E-02 | Country level |
| I47 | Health expenditure, out-of-pocket               | 2.62E-03 | 5.64E-01 | 1.15E-01 | 8.51E-06 | 3.63E-01 | Country level |

|     |                                                    |          |          |          |          |          |               |
|-----|----------------------------------------------------|----------|----------|----------|----------|----------|---------------|
| I48 | Health expenditure, total                          | 1.09E-03 | 2.63E-01 | 2.43E-01 | 8.51E-07 | 7.47E-01 | Country level |
| I49 | Household air pollution attributable DALYs, female | 2.60E-04 | 5.37E-02 | 1.64E-02 | 8.51E-07 | 1.01E-01 | Country level |
| I50 | Household air pollution attributable DALYs, male   | 1.34E-03 | 6.74E-01 | 1.13E-01 | 8.51E-07 | 8.51E-01 | Country level |
| I51 | Illiteracy rate, female                            | 1.83E-03 | 1.16E-01 | 1.16E-01 | 8.51E-06 | 8.53E-01 | Country level |
| I52 | Illiteracy rate, male                              | 1.42E-03 | 2.41E-02 | 6.26E-02 | 8.51E-06 | 1.93E-01 | Country level |
| I53 | Illiteracy rate, total                             | 1.77E-03 | 7.25E-02 | 1.01E-01 | 8.51E-06 | 8.05E-01 | Country level |
| I54 | Immigration rate                                   | 1.27E-01 | 6.48E-01 | 1.17E-01 | 8.50E-04 | 1.50E+00 | Country level |
| I55 | Informal employment, female                        | 1.08E-03 | 1.68E-01 | 1.22E-01 | 8.51E-07 | 8.74E-01 | Sector level  |
| I56 | Informal employment, male                          | 1.06E-03 | 1.59E-01 | 4.20E-01 | 8.51E-07 | 1.78E+00 | Sector level  |
| I57 | Informal employment, total                         | 1.41E-03 | 1.52E-01 | 4.38E-01 | 8.51E-07 | 1.84E+00 | Sector level  |
| I58 | International Migrant Stock                        | 1.28E-01 | 1.20E+00 | 2.34E-01 | 8.50E-04 | 1.86E+00 | Country level |
| I59 | International migrant workers in the sector        | 1.27E+00 | 2.28E+00 | 9.30E-01 | 8.51E-03 | 4.00E+00 | Sector level  |
| I60 | Internet freedom scores                            | 4.83E-03 | 3.15E+00 | 3.32E-01 | 8.51E-07 | 1.54E+00 | Country level |
| I61 | Labour productivity                                | 2.70E-04 | 3.35E-02 | 2.07E-02 | 8.51E-07 | 1.14E-01 | Country level |
| I62 | Life expectancy at birth                           | 7.90E-04 | 1.57E-01 | 5.24E-01 | 8.51E-07 | 2.10E+00 | Country level |
| I63 | Net migration rate                                 | 2.66E-03 | 5.13E-01 | 1.49E-01 | 8.51E-06 | 4.74E-01 | Country level |
| I64 | Number of threatened species                       | 2.68E-02 | 9.62E-01 | 3.37E+00 | 8.51E-03 | 1.14E+01 | Sector level  |
| I65 | Political stability and absence of violence        | 1.73E-02 | 3.31E+00 | 4.04E-01 | 8.51E-05 | 1.76E+00 | Country level |

|     |                                            |          |          |          |          |          |               |
|-----|--------------------------------------------|----------|----------|----------|----------|----------|---------------|
| I66 | Pollution level of the country             | 8.69E-03 | 3.56E+00 | 2.96E-01 | 8.51E-06 | 9.67E-01 | Country level |
| I67 | Population below national poverty line     | 2.12E-03 | 8.88E-02 | 5.25E-01 | 8.51E-06 | 2.10E+00 | Country level |
| I68 | Public expenditure on education            | 1.34E-02 | 3.79E-01 | 1.14E-01 | 8.51E-05 | 3.63E-01 | Country level |
| I69 | R&D expenditures                           | 4.00E-04 | 9.47E-02 | 5.52E-02 | 8.51E-07 | 1.78E-01 | Country level |
| I70 | Rate of researchers                        | 1.92E-03 | 1.11E-01 | 1.30E-01 | 8.51E-06 | 4.00E-01 | Country level |
| I71 | Safe access to Drinking water coverage     | 3.60E-04 | 9.66E-02 | 1.87E-02 | 8.51E-07 | 5.99E-02 | Country level |
| I72 | Sanitation coverage                        | 2.87E-02 | 7.10E+00 | 1.29E+00 | 8.51E-05 | 4.54E+00 | Country level |
| I73 | Social Protection Expenditures             | 2.30E-04 | 2.83E-02 | 1.57E-02 | 8.51E-07 | 5.45E-01 | Country level |
| I74 | State of democracy                         | 3.60E-04 | 1.32E-01 | 3.26E-02 | 8.51E-07 | 5.98E-01 | Country level |
| I75 | Unemployment rate in the country           | 1.27E+00 | 4.51E+00 | 1.80E+00 | 8.51E-03 | 5.56E+00 | Country level |
| I76 | Youth illiteracy rate, female              | 3.00E-04 | 5.55E-02 | 2.14E-02 | 8.51E-07 | 6.77E-02 | Country level |
| I77 | Youth illiteracy rate, male                | 1.52E-03 | 6.84E-02 | 9.70E-02 | 8.51E-06 | 2.98E-01 | Country level |
| I78 | Youth illiteracy rate, total               | 3.80E-04 | 6.51E-02 | 9.62E-02 | 8.51E-07 | 2.96E-01 | Country level |
| I79 | Youth unemployment                         | 2.42E-03 | 2.60E-01 | 5.67E-01 | 8.51E-06 | 2.23E+00 | Country level |
| I80 | Certified environmental management systems | 5.48E-03 | 3.50E+00 | 4.96E-01 | 8.51E-07 | 1.61E+00 | Sector level  |
| I81 | Embodied agricultural area footprint       | 1.30E-04 | 1.40E-03 | 5.60E-04 | 0.00E+00 | 4.98E-01 | Sector level  |
| I82 | Embodied CO2 footprint                     | 3.51E-03 | 2.73E+00 | 6.81E-01 | 8.51E-06 | 2.10E+00 | Sector level  |
| I83 | Embodied CO2-eq footprint                  | 8.02E-03 | 3.06E+00 | 3.87E+00 | 8.51E-06 | 1.18E+01 | Sector level  |
| I84 | Embodied forest area footprint             | 9.45E-07 | 9.05E-05 | 3.73E-05 | 0.00E+00 | 1.20E-04 | Sector level  |
| I85 | Embodied water footprint                   | 1.92E-03 | 9.65E-01 | 1.99E-01 | 8.51E-07 | 1.12E+00 | Sector level  |

|      |                                                                      |          |          |          |          |          |               |
|------|----------------------------------------------------------------------|----------|----------|----------|----------|----------|---------------|
| I86  | Extraction of biomass (related to area)                              | 1.29E-01 | 1.10E+00 | 8.42E-01 | 8.50E-04 | 3.72E+00 | Country level |
| I87  | Extraction of biomass (related to population)                        | 1.33E-01 | 1.71E+00 | 3.73E+00 | 8.50E-04 | 1.14E+01 | Country level |
| I88  | Extraction of fossil fuels                                           | 7.77E-03 | 4.16E+00 | 1.02E+00 | 8.51E-06 | 3.27E+00 | Country level |
| I89  | Extraction of industrial and construction minerals                   | 1.59E-02 | 1.34E+00 | 4.93E-01 | 8.51E-05 | 1.65E+00 | Country level |
| I90  | Extraction of ores                                                   | 2.04E-02 | 3.93E+00 | 8.17E-01 | 8.51E-05 | 2.55E+00 | Country level |
| I91  | Homicides                                                            | 9.60E-03 | 1.21E+00 | 3.99E+00 | 8.51E-07 | 1.22E+01 | Country level |
| I92  | Indigenous People Rights Protection Index                            | 1.49E-03 | 1.06E-01 | 5.80E-02 | 8.51E-06 | 1.81E-01 | Country level |
| I93  | Internally displaced people                                          | 4.24E-03 | 4.27E-01 | 2.17E-01 | 0.00E+00 | 1.18E+00 | Country level |
| I94  | Level of industrial water use (related to renewable water resources) | 1.29E-01 | 1.30E+00 | 7.81E-01 | 8.50E-04 | 3.59E+00 | Country level |
| I95  | Level of industrial water use (related to total withdrawal)          | 1.32E-01 | 4.29E+00 | 6.11E-01 | 8.50E-04 | 3.05E+00 | Country level |
| I96  | Presence of indigenous population                                    | 1.29E-02 | 9.20E-02 | 5.79E-02 | 8.51E-05 | 1.78E-01 | Country level |
| I97  | Waste management                                                     | 4.62E-03 | 3.25E+00 | 3.68E-01 | 8.51E-07 | 1.16E+00 | Country level |
| I98  | Data protection and privacy                                          | 3.80E-04 | 1.51E-01 | 4.35E-02 | 8.51E-07 | 1.34E-01 | Country level |
| I99  | Online Consumer Protection Legislation                               | 2.50E-04 | 4.29E-02 | 1.72E-02 | 8.51E-07 | 5.64E-02 | Country level |
| I100 | Child marriage, female                                               | 8.30E-04 | 1.17E-01 | 6.12E-01 | 8.51E-07 | 1.92E+00 | Country level |
| I101 | Child marriage, male                                                 | 2.50E-04 | 1.54E-02 | 4.42E-02 | 8.51E-07 | 1.35E-01 | Country level |

|      |                                 |          |          |          |          |          |               |
|------|---------------------------------|----------|----------|----------|----------|----------|---------------|
| I102 | Female genital mutilation 0-14  | 1.34E-03 | 2.45E-02 | 1.43E-02 | 8.51E-06 | 4.64E-02 | Country level |
| I103 | Mean years of schooling, female | 1.89E-03 | 6.70E-02 | 6.62E-02 | 8.51E-06 | 7.01E-01 | Country level |
| I104 | Mean years of schooling, male   | 1.89E-03 | 6.70E-02 | 6.62E-02 | 8.51E-06 | 7.01E-01 | Country level |
| I105 | Mean years of schooling, total  | 1.89E-03 | 9.52E-02 | 7.44E-02 | 8.51E-06 | 7.27E-01 | Country level |
| I106 | Under-five mortality rate       | 3.20E-04 | 4.93E-02 | 6.97E-02 | 8.51E-07 | 2.63E-01 | Country level |

## 16 Appendix 6 – Results of the relative contributions of process stages to the social hotspots in S2.1

|     | Impact category                                           | Stage 1:<br>Feedstock<br>Production | Stage 3:<br>Pyrolysis | Stage 4.3:<br>Gas fraction<br>Processing | Replacement | Indicator<br>scope |
|-----|-----------------------------------------------------------|-------------------------------------|-----------------------|------------------------------------------|-------------|--------------------|
| I1  | Children in employment, female                            | 4.20E-01                            | 8.42E-01              | -2.64E-01                                | 9.61E-07    | Sector level       |
| I2  | Children in employment, male                              | 4.97E-01                            | 8.95E-01              | -3.09E-01                                | 9.61E-07    | Sector level       |
| I3  | Children in employment, total                             | 4.97E-01                            | 8.95E-01              | -3.09E-01                                | 9.61E-07    | Sector level       |
| I4  | Evidence of violations of laws and employment regulations | 1.20E+00                            | 1.26E+01              | 1.23E+00                                 | 9.61E-05    | Sector level       |
| I5  | Freedom of association and collective bargaining          | 1.27E+00                            | 1.95E+00              | 4.93E-01                                 | 9.61E-07    | Country level      |
| I6  | Frequency of forced labour                                | 8.04E+00                            | 1.88E+00              | -7.05E+00                                | 9.61E-07    | Country level      |
| I7  | Gender wage gap                                           | 1.44E+00                            | 4.05E+00              | 1.22E+00                                 | 9.61E-03    | Sector level       |
| I8  | Goods produced by forced labour                           | 1.27E-01                            | 1.62E-01              | 1.47E-01                                 | 9.61E-06    | Sector level       |
| I9  | Living wage, per month                                    | 1.77E+00                            | 3.98E+00              | 2.00E+00                                 | 9.60E-04    | Country level      |
| I10 | Men in the sectoral labour force                          | 1.26E-01                            | 1.04E-01              | 9.58E-02                                 | 9.61E-06    | Sector level       |
| I11 | Minimum wage, per month                                   | 1.95E-01                            | 7.93E-01              | 8.53E-02                                 | 9.61E-07    | Country level      |
| I12 | number of strikes                                         | 5.33E+00                            | 4.49E+00              | 1.58E+00                                 | 9.61E-03    | Sector level       |
| I13 | Paid maternity leave                                      | 5.12E-01                            | 3.28E-01              | -7.48E-01                                | 9.61E-05    | Country level      |

|     |                                                                                            |          |          |           |          |               |
|-----|--------------------------------------------------------------------------------------------|----------|----------|-----------|----------|---------------|
| I14 | Presence of sufficient safety measures                                                     | 2.25E-01 | 1.96E-01 | 1.38E-01  | 9.61E-06 | Sector level  |
| I15 | Rate of fatal accidents at workplace                                                       | 2.49E+00 | 4.28E+00 | -1.51E-01 | 9.60E-04 | Sector level  |
| I16 | Rate of non-fatal accidents at workplace                                                   | 3.22E+00 | 1.57E+01 | 3.23E+00  | 9.61E-03 | Sector level  |
| I17 | Sector average wage, per month                                                             | 6.68E+00 | 1.50E+01 | 2.87E+00  | 9.61E-03 | Sector level  |
| I18 | Trade union density                                                                        | 8.97E-01 | 1.74E+00 | 8.90E-01  | 9.60E-04 | Country level |
| I19 | Trafficking in persons                                                                     | 4.08E+00 | 3.10E+00 | -7.86E+00 | 9.61E-06 | Country level |
| I20 | Violations of mandatory health and safety standards                                        | 8.39E-01 | 1.04E+00 | 3.80E-01  | 9.60E-04 | Country level |
| I21 | Weekly hours of work per employee female                                                   | 1.10E-01 | 1.88E-01 | -3.87E-02 | 9.61E-05 | Sector level  |
| I22 | Weekly hours of work per employee male                                                     | 7.58E-02 | 1.82E-01 | 4.25E-02  | 9.61E-05 | Sector level  |
| I23 | Women in the sectoral labour force                                                         | 2.37E+00 | 1.52E+01 | 3.11E-01  | 9.60E-04 | Sector level  |
| I24 | Active involvement of enterprises in corruption and bribery                                | 9.75E-01 | 1.04E+00 | -3.05E-01 | 1.62E-14 | Sector level  |
| I25 | Presence of anti-competitive behaviour or violation of anti-trust and monopoly legislation | 7.73E-01 | 5.63E-01 | -5.41E-01 | 9.61E-06 | Sector level  |
| I26 | Public sector corruption                                                                   | 6.44E-01 | 9.53E-01 | -6.77E-01 | 9.61E-06 | Country level |
| I27 | Social responsibility along the supply chain                                               | 4.29E+00 | 2.14E+00 | 1.03E+00  | 9.61E-07 | Sector level  |
| I28 | Access to electricity                                                                      | 4.39E-03 | 2.82E-02 | 3.11E-03  | 9.61E-07 | Country level |
| I29 | Access to internet                                                                         | 5.80E-02 | 7.22E-01 | 7.59E-02  | 9.61E-07 | Country level |
| I30 | Animal protection                                                                          | 6.72E-01 | 1.75E+00 | -5.94E-01 | 9.61E-05 | Country level |
| I31 | Asylum seekers rate                                                                        | 7.67E-01 | 1.72E+00 | 5.24E-01  | 9.60E-04 | Country level |
| I32 | Biodiversity & Habitat                                                                     | 1.24E+00 | 1.29E+01 | -7.91E-02 | 9.61E-07 | Country level |
| I33 | Contribution to economic development                                                       | 1.72E-01 | 3.13E-01 | 1.74E-01  | 9.60E-04 | Sector level  |
| I34 | Ecosystem services                                                                         | 2.34E+00 | 1.64E+01 | 5.45E-03  | 9.61E-03 | Country level |
| I35 | Embodied value added total                                                                 | 5.87E-01 | 2.91E-01 | 1.01E-01  | 9.61E-05 | Sector level  |
| I36 | Emigration rate                                                                            | 7.72E-01 | 1.72E+00 | 1.97E+00  | 9.60E-04 | Country level |
| I37 | Female genital mutilation 15-49                                                            | 7.58E-02 | 8.33E-02 | 2.78E-02  | 9.61E-06 | Country level |
| I38 | Female with account at a financial institution                                             | 5.82E-01 | 4.45E-01 | 2.74E-01  | 9.61E-06 | Country level |

|     |                                                    |          |          |           |          |               |
|-----|----------------------------------------------------|----------|----------|-----------|----------|---------------|
| I39 | Food insecurity                                    | 5.65E-02 | 7.73E-01 | 3.00E-01  | 1.60E-14 | Country level |
| I40 | Freedom of the press                               | 4.11E+00 | 2.29E+00 | -7.55E+00 | 9.61E-06 | Country level |
| I41 | Gender inequalities                                | 2.14E-01 | 8.53E-01 | 1.46E-01  | 9.61E-07 | Country level |
| I42 | Global freedom scores                              | 4.05E+00 | 1.95E+00 | -7.89E+00 | 9.61E-07 | Country level |
| I43 | Global Peace Index                                 | 4.73E+00 | 3.07E+00 | -7.45E+00 | 9.61E-07 | Country level |
| I44 | Global Terrorism Index                             | 8.16E-01 | 1.10E+00 | 1.55E-01  | 9.61E-06 | Country level |
| I45 | Health expenditure, domestic general government    | 1.04E-01 | 1.24E-01 | 2.31E-01  | 9.61E-06 | Country level |
| I46 | Health expenditure, external resources             | 1.18E-02 | 3.06E-02 | 9.62E-03  | 9.61E-06 | Country level |
| I47 | Health expenditure, out-of-pocket                  | 6.95E-01 | 4.24E-01 | 4.16E-01  | 9.61E-06 | Country level |
| I48 | Health expenditure, total                          | 3.24E-01 | 8.72E-01 | 3.41E-01  | 9.61E-07 | Country level |
| I49 | Household air pollution attributable DALYs, female | 6.62E-02 | 1.23E-01 | 5.86E-02  | 9.61E-07 | Country level |
| I50 | Household air pollution attributable DALYs, male   | 8.31E-01 | 1.04E+00 | -6.36E-01 | 9.61E-07 | Country level |
| I51 | Illiteracy rate, female                            | 1.43E-01 | 1.05E+00 | 3.70E-01  | 9.61E-06 | Country level |
| I52 | Illiteracy rate, male                              | 2.98E-02 | 2.25E-01 | 4.74E-02  | 9.61E-06 | Country level |
| I53 | Illiteracy rate, total                             | 8.93E-02 | 9.91E-01 | 3.28E-01  | 9.61E-06 | Country level |
| I54 | Immigration rate                                   | 7.98E-01 | 1.75E+00 | 1.98E+00  | 9.60E-04 | Country level |
| I55 | Informal employment, female                        | 2.07E-01 | 1.07E+00 | 4.18E-01  | 9.61E-07 | Sector level  |
| I56 | Informal employment, male                          | 1.96E-01 | 2.13E+00 | 1.37E-01  | 9.61E-07 | Sector level  |
| I57 | Informal employment, total                         | 1.87E-01 | 2.19E+00 | 3.80E-01  | 9.61E-07 | Sector level  |
| I58 | International Migrant Stock                        | 1.48E+00 | 2.17E+00 | 1.05E+00  | 9.60E-04 | Country level |
| I59 | International migrant workers in the sector        | 2.81E+00 | 4.67E+00 | 2.30E+00  | 9.61E-03 | Sector level  |
| I60 | Internet freedom scores                            | 3.88E+00 | 1.85E+00 | -7.95E+00 | 9.61E-07 | Country level |
| I61 | Labour productivity                                | 4.13E-02 | 1.38E-01 | 4.43E-02  | 9.61E-07 | Country level |
| I62 | Life expectancy at birth                           | 1.94E-01 | 2.50E+00 | 1.83E-02  | 9.61E-07 | Country level |
| I63 | Net migration rate                                 | 6.33E-01 | 5.53E-01 | 1.61E+00  | 9.61E-06 | Country level |
| I64 | Number of threatened species                       | 1.19E+00 | 1.33E+01 | -6.52E-02 | 9.61E-03 | Sector level  |
| I65 | Political stability and absence of violence        | 4.08E+00 | 2.10E+00 | -7.96E+00 | 9.61E-05 | Country level |

|     |                                                    |          |          |           |           |               |
|-----|----------------------------------------------------|----------|----------|-----------|-----------|---------------|
| I66 | Pollution level of the country                     | 4.38E+00 | 1.13E+00 | 1.29E+00  | 9.61E-06  | Country level |
| I67 | Population below national poverty line             | 1.09E-01 | 2.50E+00 | 8.23E-02  | 9.61E-06  | Country level |
| I68 | Public expenditure on education                    | 4.67E-01 | 4.24E-01 | -6.86E-01 | 9.61E-05  | Country level |
| I69 | R&D expenditures                                   | 1.17E-01 | 2.07E-01 | 5.05E-02  | 9.61E-07  | Country level |
| I70 | Rate of researchers                                | 1.37E-01 | 4.67E-01 | 1.42E-01  | 9.61E-06  | Country level |
| I71 | Safe access to Drinking water coverage             | 1.19E-01 | 6.99E-02 | -2.35E-02 | 9.61E-07  | Country level |
| I72 | Sanitation coverage                                | 8.74E+00 | 5.35E+00 | -5.86E+00 | 9.61E-05  | Country level |
| I73 | Social Protection Expenditures                     | 3.49E-02 | 6.88E-01 | 6.52E-02  | 9.61E-07  | Country level |
| I74 | State of democracy                                 | 1.63E-01 | 7.50E-01 | 8.85E-02  | 9.61E-07  | Country level |
| I75 | Unemployment rate in the country                   | 5.56E+00 | 6.48E+00 | 2.12E+00  | 9.61E-03  | Country level |
| I76 | Youth illiteracy rate, female                      | 6.84E-02 | 7.90E-02 | 7.41E-02  | 9.61E-07  | Country level |
| I77 | Youth illiteracy rate, male                        | 8.42E-02 | 3.48E-01 | 7.07E-02  | 9.61E-06  | Country level |
| I78 | Youth illiteracy rate, total                       | 8.02E-02 | 3.45E-01 | 7.78E-02  | 9.61E-07  | Country level |
| I79 | Youth unemployment                                 | 3.20E-01 | 2.65E+00 | 1.83E-01  | 9.61E-06  | Country level |
| I80 | Certified environmental management systems         | 4.32E+00 | 1.88E+00 | -8.05E+00 | 9.61E-07  | Sector level  |
| I81 | Embodied agricultural area footprint               | 1.72E-03 | 6.33E-01 | 4.20E-04  | -1.11E-16 | Sector level  |
| I82 | Embodied CO2 footprint                             | 3.37E+00 | 2.45E+00 | -7.44E+00 | 9.61E-06  | Sector level  |
| I83 | Embodied CO2-eq footprint                          | 3.77E+00 | 1.38E+01 | -7.28E+00 | 9.61E-06  | Sector level  |
| I84 | Embodied forest area footprint                     | 1.10E-04 | 1.40E-04 | 9.31E-05  | 1.04E-17  | Sector level  |
| I85 | Embodied water footprint                           | 1.19E+00 | 1.36E+00 | 1.15E+00  | 9.61E-07  | Sector level  |
| I86 | Extraction of biomass (related to area)            | 1.36E+00 | 4.33E+00 | 1.19E+00  | 9.60E-04  | Country level |
| I87 | Extraction of biomass (related to population)      | 2.11E+00 | 1.33E+01 | -5.10E-01 | 9.60E-04  | Country level |
| I88 | Extraction of fossil fuels                         | 5.13E+00 | 3.82E+00 | -8.06E+00 | 9.61E-06  | Country level |
| I89 | Extraction of industrial and construction minerals | 1.66E+00 | 1.92E+00 | -2.92E-01 | 9.61E-05  | Country level |
| I90 | Extraction of ores                                 | 4.85E+00 | 2.98E+00 | 1.38E-01  | 9.61E-05  | Country level |
| I91 | Homicides                                          | 1.49E+00 | 1.43E+01 | 9.14E-02  | 9.61E-07  | Country level |
| I92 | Indigenous People Rights Protection Index          | 1.31E-01 | 2.11E-01 | -8.18E-02 | 9.61E-06  | Country level |

|      |                                                                      |          |          |           |          |               |
|------|----------------------------------------------------------------------|----------|----------|-----------|----------|---------------|
| I93  | Internally displaced people                                          | 5.26E-01 | 1.42E+00 | 6.20E-01  | 8.24E-14 | Country level |
| I94  | Level of industrial water use (related to renewable water resources) | 1.60E+00 | 4.19E+00 | 5.25E-01  | 9.60E-04 | Country level |
| I95  | Level of industrial water use (related to total withdrawal)          | 5.29E+00 | 3.55E+00 | -6.08E+00 | 9.60E-04 | Country level |
| I96  | Presence of indigenous population                                    | 1.13E-01 | 2.07E-01 | -4.39E-02 | 9.61E-05 | Country level |
| I97  | Waste management                                                     | 4.01E+00 | 1.35E+00 | -8.05E+00 | 9.61E-07 | Country level |
| I98  | Data protection and privacy                                          | 1.86E-01 | 1.57E-01 | 8.57E-02  | 9.61E-07 | Country level |
| I99  | Online Consumer Protection Legislation                               | 5.29E-02 | 6.59E-02 | 3.07E-02  | 9.61E-07 | Country level |
| I100 | Child marriage, female                                               | 1.44E-01 | 2.24E+00 | 1.01E-01  | 9.61E-07 | Country level |
| I101 | Child marriage, male                                                 | 1.89E-02 | 1.58E-01 | 1.85E-02  | 9.61E-07 | Country level |
| I102 | Female genital mutilation 0-14                                       | 3.02E-02 | 5.41E-02 | 9.34E-03  | 9.61E-06 | Country level |
| I103 | Mean years of schooling, female                                      | 8.26E-02 | 8.70E-01 | 1.25E-01  | 9.61E-06 | Country level |
| I104 | Mean years of schooling, male                                        | 8.26E-02 | 8.70E-01 | 1.25E-01  | 9.61E-06 | Country level |
| I105 | Mean years of schooling, total                                       | 1.17E-01 | 9.00E-01 | 3.26E-01  | 9.61E-06 | Country level |
| I106 | Under-five mortality rate                                            | 6.08E-02 | 3.12E-01 | 6.81E-02  | 9.61E-07 | Country level |